Feasible high-dimensional measurement-device-independent quantum key distribution

被引:5
作者
Yang, Meng-Ying [1 ]
Zhao, Peng [1 ]
Zhou, Lan [2 ]
Zhong, Wei [1 ,3 ]
Sheng, Yu-Bo [1 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210003, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Minist Educ, Key Lab Broadband Wireless Commun & Sensor Networ, Nanjing 210003, Peoples R China
基金
中国国家自然科学基金;
关键词
measurement-device-independent quantum key distribution; high-dimensional qudit; hyperentanglement Bell state analysis; SECURE DIRECT COMMUNICATION; BELL-STATE ANALYSIS; DOT SPINS; CRYPTOGRAPHY; SYSTEMS;
D O I
10.1088/1612-202X/ac091b
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Measurement-device-independent quantum key distribution (MDI-QKD) can resist all possible attacks from practical measurement devices. High-dimensional (HD) MDI-QKD in multiple degrees of freedom (DOFs) can efficiently increase the key generation rate and has strong noise and error resistance. However, previous HD MDI-QKD protocols in multiple DOFs required complete hyperentangled Bell state analysis (HBSA), which cannot be realized under current experimental conditions and largely limits the practicality of the HD MDI-QKD. In this paper, we propose an HD MDI-QKD protocol in multiple DOFs which adopts a linear-optical HBSA. This adoption of the linear-optical HBSA makes our HD MDI-QKD feasible under current experimental technology. The key generation rate of our MDI-QKD protocol is about eight times of the original MDI-QKD protocol. Our HD MDI-QKD protocol may have potential applications in current and future quantum communication fields.
引用
收藏
页数:9
相关论文
共 70 条
[1]   Secret keys agreement in communication networks with quantum key distribution and trusted nodes [J].
Arbekov, I. M. ;
Molotkov, S. N. .
LASER PHYSICS LETTERS, 2020, 17 (05)
[2]  
Bennett C H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[3]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[4]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[5]   Long-Distance Free-Space Measurement-Device-Independent Quantum Key Distribution [J].
Cao, Yuan ;
Li, Yu-Huai ;
Yang, Kui-Xing ;
Jiang, Yang-Fan ;
Li, Shuang-Lin ;
Hu, Xiao-Long ;
Abulizi, Maimaiti ;
Li, Cheng-Long ;
Zhang, Weijun ;
Sun, Qi-Chao ;
Liu, Wei-Yue ;
Jiang, Xiao ;
Liao, Sheng-Kai ;
Ren, Ji-Gang ;
Li, Hao ;
You, Lixing ;
Wang, Zhen ;
Yin, Juan ;
Lu, Chao-Yang ;
Wang, Xiang-Bin ;
Zhang, Qiang ;
Peng, Cheng-Zhi ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2020, 125 (26)
[6]   Novel continuous-variable quantum secure direct communication and its security analysis [J].
Chai, Geng ;
Cao, Zhengwen ;
Liu, Weiqi ;
Zhang, Minghui ;
Liang, Kexin ;
Peng, Jinye .
LASER PHYSICS LETTERS, 2019, 16 (09)
[7]   Three-step three-party quantum secure direct communication [J].
Chen, Shan-Shan ;
Zhou, Lan ;
Zhong, Wei ;
Sheng, Yu-Bo .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (09)
[8]   Practical source monitoring for continuous-variable quantum key distribution [J].
Chu, Binjie ;
Zhang, Yichen ;
Huang, Yundi ;
Yu, Song ;
Chen, Ziyang ;
Guo, Hong .
QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (02)
[9]   Measurement-device-independent quantum key distribution with hyper-encoding [J].
Cui, Zheng-Xia ;
Zhong, Wei ;
Zhou, Lan ;
Sheng, Yu-Bo .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (11)
[10]   High-dimensional measurement-device-independent quantum key distribution on two-dimensional subspaces [J].
Dellantonio, Luca ;
Sorensen, Anders S. ;
Bacco, Davide .
PHYSICAL REVIEW A, 2018, 98 (06)