The sine-Gordon wobble

被引:29
作者
Kälbermann, G [1 ]
机构
[1] Fac Agr, Dept Soil & Water, IL-76100 Rehovot, Israel
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 48期
关键词
D O I
10.1088/0305-4470/37/48/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonperturbative, oscillatory, winding number 1 solutions of the sine-Gordon equation are presented and studied numerically. We call these nonperturbative shape modes wobble solitons. Perturbed sine-Gordon kinks are found to decay to wobble solitons.
引用
收藏
页码:11603 / 11612
页数:10
相关论文
共 14 条
[1]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
[2]   THE RIGIDITY OF SINE-GORDON BREATHERS [J].
BIRNIR, B ;
MCKEAN, HP ;
WEINSTEIN, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (08) :1043-1051
[3]   SPONTANEOUS EMISSION OF RADIATION FROM A DISCRETE SINE-GORDON KINK [J].
BOESCH, R ;
WILLIS, CR ;
ELBATANOUNY, M .
PHYSICAL REVIEW B, 1989, 40 (04) :2284-2296
[4]  
Eisenhart L. P., 1960, TREATISE DIFFERENTIA
[5]   DYNAMICS OF SINE-GORDON SOLITONS IN PRESENCE OF PERTURBATIONS [J].
FOGEL, MB ;
TRULLINGER, SE ;
BISHOP, AR ;
KRUMHANSL, JA .
PHYSICAL REVIEW B, 1977, 15 (03) :1578-1592
[6]   Internal modes of solitary waves [J].
Kivshar, YS ;
Pelinovsky, DE ;
Cretegny, T ;
Peyrard, M .
PHYSICAL REVIEW LETTERS, 1998, 80 (23) :5032-5035
[7]  
LMB GL, 1980, ELEMENTS SOLITON THE
[8]   Existence of internal modes of sine-Gordon kinks [J].
Quintero, NR ;
Sánchez, A ;
Mertens, FG .
PHYSICAL REVIEW E, 2000, 62 (01) :R60-R63
[9]  
Rajaraman R, 1987, SOLITONS INSTANTONS
[10]  
REOISSENET M, 1996, WAVES CALLED SOLITON