Nonconformal Particles of Hyperbranched Sulfonated Phenylated Poly(phenylene) Ionomers as Proton-Conducting Pathways in Proton Exchange Membrane Fuel Cell Catalyst Layers

被引:13
作者
Balogun, Emmanuel [1 ]
Cassegrain, Simon [1 ]
Mardle, Peter [1 ]
Adamski, Michael [1 ]
Saatkamp, Torben [1 ]
Holdcroft, Steven [1 ]
机构
[1] Simon Fraser Univ, Dept Chem, Holdcroft Res Grp, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MASS-TRANSPORT LIMITATIONS; WATER MANAGEMENT; CATHODE; PERFORMANCE; NAFION; RECOMMENDATIONS; DEGRADATION; DURABILITY; MITIGATION; STABILITY;
D O I
10.1021/acsenergylett.2c01038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Characteristic poor electrochemical kinetics, high ionic resistance, and high mass transport resistance within the catalyst layer (CL) are chief among parameters that cause poor performance of proton exchange membrane fuel cells (PEMFCs) utilizing hydrocarbon-based proton-conducting ionomers. Herein, the design and addition of nondimensionally swellable, nonconformal, hyperbranched sulfo-phenylated poly(phenylene) ionomer particles (HB-sPPT-H+) are reported to introduce a direct pathway for proton conduction in hydrocarbon ionomer-based CLs, resulting in an eight times reduction in ionic resistance of the CL, a 71% increase in catalyst mass activity, and a >90% increase in power at 0.6 V (H-2/air) compared to state-of-the-art hydrocarbon ionomer-based CLs. The benefits of incorporating HB-sPPT-11(+) ionomer particles are also shown when employed in perfluorosulfonic acid (PFSA) ionomer-based PEMFCs. These results dispel a commonly held conception that hydrocarbon ionomers possess limitations of gas permeability and electrochemical activity and open up previously unexplored avenues of ionomer development for nonfluorous, wholly hydrocarbon PEMFCs.
引用
收藏
页码:2070 / 2078
页数:9
相关论文
共 68 条
[1]   On the evolution of sulfonated polyphenylenes as proton exchange membranes for fuel cells [J].
Adamski, Michael ;
Peressin, Nicolas ;
Holdcroft, Steven .
MATERIALS ADVANCES, 2021, 2 (15) :4966-5005
[2]   Molecular branching as a simple approach to improving polymer electrolyte membranes [J].
Adamski, Michael ;
Skalski, Thomas J. G. ;
Schibli, Eric M. ;
Killer, Miho ;
Wu, Yang ;
Peressin, Nicolas ;
Frisken, Barbara J. ;
Holdcroft, Steven .
JOURNAL OF MEMBRANE SCIENCE, 2020, 595
[3]   Highly Stable, Low Gas Crossover, Proton-Conducting Phenylated Polyphenylenes [J].
Adamski, Michael ;
Skalski, Thomas J. G. ;
Britton, Benjamin ;
Peckham, Timothy J. ;
Metzler, Lukas ;
Holdcroft, Steven .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (31) :9058-9061
[4]   Sulfonated aromatic polymers containing hexafluoroisopropylidene groups: a simple but effective structure for fuel cell membranes [J].
Ahn, Jinju ;
Shimizu, Ryo ;
Miyatake, Kenji .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (47) :24625-24632
[5]   Catalyst layers for fluorine-free hydrocarbon PEMFCs [J].
Balogun, Emmanuel ;
Mardle, Peter ;
Nguyen, Hien ;
Breitwieser, Matthias ;
Holdcroft, Steven .
ELECTROCHIMICA ACTA, 2022, 401
[6]   Communication-Non-Fluorous, Hydrocarbon PEMFCs, Generating > 1 W cm-2 Power [J].
Balogun, Emmanuel ;
Adamski, Michael ;
Holdcroft, Steven .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (08)
[7]   Performance and durability studies of perfluorosulfonic acid ionomers as binders in PEMFC catalyst layers using Electrochemical Impedance Spectroscopy [J].
Balogun, Emmanuel O. ;
Hussain, Nabeel ;
Chamier, Jessica ;
Barendse, Paul .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (60) :32219-32230
[8]  
Benjamin T., 2017, Team Roadmap, DOI [10.2172/1220127, DOI 10.2172/1220127]
[9]   Multicomponent, multiphase interactions in fuel-cell inks [J].
Berlinger, Sarah A. ;
Garg, Samay ;
Weber, Adam Z. .
CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 29
[10]   Probing Ionomer Interactions with Electrocatalyst Particles in Solution [J].
Berlinger, Sarah A. ;
McCloskey, Bryan D. ;
Weber, Adam Z. .
ACS ENERGY LETTERS, 2021, 6 (06) :2275-2282