Improved Modeling of Peptide-Protein Binding Through Global Docking and Accelerated Molecular Dynamics Simulations

被引:67
作者
Wang, Jinan [1 ,2 ]
Alekseenko, Andrey [3 ,4 ]
Kozakov, Dima [3 ,4 ]
Miao, Yinglong [1 ,2 ]
机构
[1] Univ Kansas, Ctr Computat Biol, Lawrence, KS 66045 USA
[2] Univ Kansas, Dept Mol Biosci, Lawrence, KS 66045 USA
[3] SUNY Stony Brook, Laufer Ctr Phys & Quantitat Biol, Stony Brook, NY 11794 USA
[4] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
peptide-protein binding; peptide docking; PeptiDock; gaussian accelerated molecular dynamics (GaMD); peptide flexibility; ENHANCED SAMPLING TECHNIQUES; MONTE-CARLO; SIDE-CHAIN; WEB SERVER; THERAPEUTICS; AFFINITIES; PREDICTION; COMPLEXES; ENSEMBLE; DATABASE;
D O I
10.3389/fmolb.2019.00112
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Peptides mediate up to 40% of known protein-protein interactions in higher eukaryotes and play a key role in cellular signaling, protein trafficking, immunology, and oncology. However, it is challenging to predict peptide-protein binding with conventional computational modeling approaches, due to slow dynamics and high peptide flexibility. Here, we present a prototype of the approach which combines global peptide docking using ClusPro PeptiDock and all-atom enhanced simulations using Gaussian accelerated molecular dynamics (GaMD). For three distinct model peptides, the lowest backbone root-mean-square deviations (RMSDs) of their bound conformations relative to X-ray structures obtained from PeptiDock were 3.3-4.8 angstrom, being medium quality predictions according to the Critical Assessment of PRediction of Interactions (CAPRI) criteria. GaMD simulations refined the peptide-protein complex structures with significantly reduced peptide backbone RMSDs of 0.6-2.7 angstrom, yielding two high quality (sub-angstrom) and one medium quality models. Furthermore, the GaMD simulations identified important low-energy conformational states and revealed the mechanism of peptide binding to the target proteins. Therefore, PeptiDock+GaMD is a promising approach for exploring peptide-protein interactions.
引用
收藏
页数:10
相关论文
共 68 条
[1]   Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration [J].
Abrams, Cameron ;
Bussi, Giovanni .
ENTROPY, 2014, 16 (01) :163-199
[2]  
Ahrens VM, 2012, FUTURE MED CHEM, V4, P1567, DOI [10.4155/FMC.12.76, 10.4155/fmc.12.76]
[3]   High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock [J].
Alam, Nawsad ;
Goldstein, Oriel ;
Xia, Bing ;
Porter, Kathryn A. ;
Kozakov, Dima ;
Schueler-Furman, Ora .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (12)
[4]   AnchorDock: Blind and Flexible Anchor-Driven Peptide Docking [J].
Ben-Shimon, Avraham ;
Niv, Masha Y. .
STRUCTURE, 2015, 23 (05) :929-940
[5]   Structure and substrate specificity of the Pim-1 kinase [J].
Bullock, AN ;
Debreczeni, J ;
Amos, AL ;
Knapp, S ;
Turk, BE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (50) :41675-41682
[6]  
Case D.A., 2018, AMBER 2018
[7]   On searching in, sampling of, and dynamically moving through conformational space of biomolecular systems: A review [J].
Christen, Markus ;
Van Gunsteren, Wilfred F. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (02) :157-166
[8]   DARS (Decoys As the Reference State) Potentials for Protein-Protein Docking [J].
Chuang, Gwo-Yu ;
Kozakov, Dima ;
Brenke, Ryan ;
Comeau, Stephen R. ;
Vajda, Sandor .
BIOPHYSICAL JOURNAL, 2008, 95 (09) :4217-4227
[9]   Protein-peptide docking: opportunities and challenges [J].
Ciemny, Maciej ;
Kurcinski, Mateusz ;
Kamel, Karol ;
Kolinski, Andrzej ;
Alam, Nawsad ;
Schueler-Furman, Ora ;
Kmiecik, Sebastian .
DRUG DISCOVERY TODAY, 2018, 23 (08) :1530-1537
[10]   Protein-protein interaction investigated by steered molecular dynamics: The TCR-pMHC complex [J].
Cuendet, Michel A. ;
Michielin, Olivier .
BIOPHYSICAL JOURNAL, 2008, 95 (08) :3575-3590