Endoplasmic Reticulum Subproteome Analysis Reveals Underlying Defense Mechanisms of Wheat Seedling Leaves under Salt Stress

被引:17
|
作者
Zhang, Junwei [1 ]
Liu, Dongmiao [1 ]
Zhu, Dong [1 ]
Liu, Nannan [1 ]
Yan, Yueming [1 ]
机构
[1] Capital Normal Univ, Coll Life Sci, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
wheat; salt stress; physiological characteristics; ER proteome; label-free quantitation; CHLOROPLAST PROTEOME ANALYSIS; PLASMA-MEMBRANE PROTEINS; ROOT-TIPS; RESPONSES; LINE; SALINITY; SINGLE; GROWTH;
D O I
10.3390/ijms22094840
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Salt stress is the second most important abiotic stress factor in the world, which seriously affects crop growth, development and grain production. In this study, we performed the first integrated physiological and endoplasmic reticulum (ER) proteome analysis of wheat seedling leaves under salt stress using a label-free-based quantitative proteomic approach. Salt stress caused significant decrease in seedling height, root length, relative water content and chlorophyll content of wheat seedling leaves, indicating that wheat seedling growth was significantly inhibited under salt stress. The ER proteome analysis identified 233 ER-localized differentially accumulated proteins (DAPs) in response to salt stress, including 202 upregulated and 31 downregulated proteins. The upregulated proteins were mainly involved in the oxidation-reduction process, transmembrane transport, the carboxylic acid metabolic process, stress response, the arbohydrate metabolic process and proteolysis, while the downregulated proteins mainly participated in the metabolic process, biological regulation and the cellular process. In particular, salt stress induced significant upregulation of protein disulfide isomerase-like proteins and heat shock proteins and significant downregulation of ribosomal protein abundance. Further transcript expression analysis revealed that half of the detected DAP genes showed a consistent pattern with their protein levels under salt stress. A putative metabolic pathway of ER subproteome of wheat seedling leaves in response to salt stress was proposed, which reveals the potential roles of wheat ER proteome in salt stress response and defense.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses
    Cheng, Zhi-Wei
    Chen, Zi-Yan
    Yan, Xing
    Bian, Yan-Wei
    Deng, Xiong
    Yan, Yue-Ming
    JOURNAL OF PROTEOMICS, 2018, 170 : 1 - 13
  • [2] Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery
    Lv, Dong-Wen
    Zhu, Geng-Rui
    Zhu, Dong
    Bian, Yan-Wei
    Liang, Xiao-Na
    Cheng, Zhi-Wei
    Deng, Xiong
    Yan, Yue-Ming
    JOURNAL OF PROTEOMICS, 2016, 143 : 93 - 105
  • [3] Proteome and Phosphoproteome Characterization Reveals New Response and Defense Mechanisms of Brachypodium distachyon Leaves under Salt Stress
    Lv, Dong-Wen
    Subburaj, Saminathan
    Cao, Min
    Yan, Xing
    Li, Xiaohui
    Appels, Rudi
    Sun, Dong-Fa
    Ma, Wujun
    Yan, Yue-Ming
    MOLECULAR & CELLULAR PROTEOMICS, 2014, 13 (02) : 632 - 652
  • [4] Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of Jatropha Curcas Seedling under Chilling Stress
    Liu, Hui
    Wang, Fen-Fen
    Peng, Xian-Jun
    Huang, Jian-Hui
    Shen, Shi-Hua
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (01)
  • [5] Analysis of chloroplast crotonylome of wheat seedling leaves reveals the roles of crotonylated proteins involved in salt-stress responses
    Zhu, Dong
    Liu, Junxian
    Duan, Wenjing
    Sun, Haocheng
    Zhang, Liping
    Yan, Yueming
    JOURNAL OF EXPERIMENTAL BOTANY, 2023, 74 (06) : 2067 - 2082
  • [6] Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.)
    Zhang, Ming
    Lv, Dongwen
    Ge, Pei
    Bian, Yanwei
    Chen, Guanxing
    Zhu, Gengrui
    Li, Xiaohui
    Yan, Yueming
    JOURNAL OF PROTEOMICS, 2014, 109 : 290 - 308
  • [7] Comparative Transcriptome Analysis Reveals the Underlying Response Mechanism to Salt Stress in Maize Seedling Roots
    Zhang, Chen
    Chen, Bin
    Zhang, Ping
    Han, Qinghui
    Zhao, Guangwu
    Zhao, Fucheng
    METABOLITES, 2023, 13 (11)
  • [8] Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses
    Zhu, Dong
    Luo, Fei
    Zou, Rong
    Liu, Junxian
    Yan, Yueming
    JOURNAL OF PROTEOMICS, 2021, 234
  • [9] Oxidative and endoplasmic reticulum stress defense mechanisms of bovine granulosa cells exposed to heat stress
    Alemu, Teshome Wondie
    Pandey, Hari Om
    Wondim, Dessie Salilew
    Gebremedhn, Samuel
    Neuhof, Christiane
    Tholen, Ernst
    Holker, Michael
    Schellander, Karl
    Tesfaye, Dawit
    THERIOGENOLOGY, 2018, 110 : 130 - 141
  • [10] Transcriptome analysis reveals the molecular mechanisms underlying the enhancement of salt-tolerance in Melia azedarach under salinity stress
    Li, Na
    Shao, Tianyun
    Xu, Li
    Long, Xiaohua
    Rengel, Zed
    Zhang, Yu
    SCIENTIFIC REPORTS, 2024, 14 (01):