Gauge theory approach for diffusive and precessional spin dynamics in a two-dimensional electron gas

被引:63
作者
Tokatly, I. V. [2 ,3 ,4 ,5 ]
Sherman, E. Ya [1 ,2 ]
机构
[1] Univ Basque Country, Dept Phys Chem, EHU, E-48080 Bilbao, Spain
[2] Basque Fdn Sci IKERBASQUE, Bilbao 48011, Bizkaia, Spain
[3] Univ Basque Country, ETSF, Dept Fis Mat, EHU, San Sebastian, Spain
[4] Univ Basque Country, Ctr Mixto, CSIC, EHU, San Sebastian, Spain
[5] Moscow Inst Elect Technol, Zelenograd 124498, Russia
关键词
Spin-orbit coupling; Spin dynamics; Two-dimensional electron gas; Non-Abelian gauge field; QUANTUM-WELLS; RELAXATION; SEMICONDUCTORS; SPINTRONICS; ANISOTROPY;
D O I
10.1016/j.aop.2010.01.007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a gauge theory for diffusive and precessional spin dynamics in a two-dimensional electron gas. Our approach reveals a direct connection between the absence of the equilibrium spin current and a strong anisotropy in the spin relaxation: both effects arise if spin-orbit coupling is reduced to a pure gauge SU(2) field. In this case, the spin-orbit coupling can be removed by a gauge transformation in the form of a local SU(2) spin rotation. The resulting spin dynamics is exactly described in terms of two kinetic coefficients: the spin diffusion and electron mobility. After the inverse transformation, full diffusive and precessional spin density dynamics, including the anisotropic spin relaxation, formation of stable spin structures, and spin precession induced by a macroscopic current are restored. Explicit solutions of the spin evolution equations are found for the initially uniform spin density and for stable, nonuniform structures. Our analysis demonstrates a universal relation between the spin relaxation rate and spin-diffusion coefficient. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1104 / 1117
页数:14
相关论文
共 57 条
[1]   Spin-orbit coupling effects on quantum transport in lateral semiconductor dots [J].
Aleiner, IL ;
Fal'ko, VI .
PHYSICAL REVIEW LETTERS, 2001, 87 (25) :256801-1
[2]  
[Anonymous], 2009, Classical Electrodynamics
[3]   Giant spin relaxation anisotropy in zinc-blende heterostructures [J].
Averkiev, NS ;
Golub, LE .
PHYSICAL REVIEW B, 1999, 60 (23) :15582-15584
[4]   Exact SU(2) symmetry and persistent spin helix in a spin-orbit coupled system [J].
Bernevig, B. Andrei ;
Orenstein, J. ;
Zhang, Shou-Cheng .
PHYSICAL REVIEW LETTERS, 2006, 97 (23)
[5]   Boundary conditions for spin-diffusion equations with Rashba spin-orbit interaction [J].
Bleibaum, O. .
PHYSICAL REVIEW B, 2006, 74 (11)
[6]   Spin diffusion equations for systems with Rashba spin-orbit interaction in an electric field [J].
Bleibaum, O .
PHYSICAL REVIEW B, 2006, 73 (03)
[7]   Quantum corrections to spin-charge coupling coefficients in the Rashba model [J].
Bleibaum, O .
PHYSICAL REVIEW B, 2005, 72 (07)
[8]   Semiclassical kinetic theory of electron spin relaxation in semiconductors [J].
Bronold, FX ;
Saxena, A ;
Smith, DL .
PHYSICAL REVIEW B, 2004, 70 (24) :1-22
[9]   Magnetic-field dependence of electron spin relaxation in n-type semiconductors -: art. no. 233206 [J].
Bronold, FX ;
Martin, I ;
Saxena, A ;
Smith, DL .
PHYSICAL REVIEW B, 2002, 66 (23) :1-4
[10]  
BYCHKOV YA, 1984, JETP LETT, V39, P79