Effect of a plasma synthesized polypyrrole coverage on polylactic acid/hydroxyapatite scaffolds for bone tissue engineering

被引:11
|
作者
Flores-Sanchez, Maria G. [1 ]
Islas-Arteaga, Nancy C. [4 ]
Raya-Rivera, Atlantida M. [3 ]
Esquiliano-Rendon, Diego R. [3 ]
Morales-Corona, Juan [2 ]
Uribe-Juarez, Omar E. [4 ]
Vivar-Velazquez, Flor I. [2 ]
Ortiz-Vazquez, Greta P. [5 ]
Olayo, Roberto [2 ]
机构
[1] La Salle Univ Mexico, Dept Invest, Fac Engn, Av Benjamin Franklin 45, Mexico City 06140, DF, Mexico
[2] Univ Autonoma Metropolitana, Dept Phys, Mexico City, DF, Mexico
[3] Child Hosp Mexico Federico Gomez, Dept Tissue Engn, Mexico City, DF, Mexico
[4] Univ Autonoma Metropolitana, Dept Elect Engn, Mexico City, DF, Mexico
[5] New Sanat Durango, Dept Biomed Engn, Mexico City, DF, Mexico
关键词
electrospinning; hydroxyapatite; plasma polymerization; polylactic acid; polypyrrole; PLURIPOTENT STEM-CELLS; BIOMATERIALS;
D O I
10.1002/jbm.a.37205
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Composite biomaterials are solids that contain two or more different materials, combining the properties of their components to restore or improve the function of tissues. In this study, we report the generation of electrospun matrices with osteoconductive properties and porosity using the combination of a biodegradable polyester, polylactic acid (PLA), and hydroxyapatite (HA). Additionally, we report the effects of modifying these matrices through plasma polymerization of pyrrole on the growth and osteogenic differentiation of rabbit bone marrow stem cells. Cells were isolated, seeded and cultured on biomaterials for periods between 7 and 28 days. The matrices we obtained were formed by nano and microfibers containing up to 35.7 wt% HA, presenting a variety of apparent pore sizes to allow for the passage of nutrients to bone cells. Scanning electron microscopy showed that the fibers were coated with polypyrrole doped with iodine, and MTT assay demonstrated this increased cell proliferation and significantly improved cell viability due to the adhesive properties of the polymer. Our results show that PLA/HA/Pyrrole/Iodine matrices are favorable for bone tissue engineering.
引用
收藏
页码:2199 / 2211
页数:13
相关论文
共 50 条
  • [41] The effect of temperature on the physical-chemical properties of bovine hydroxyapatite biomimetic scaffolds for bone tissue engineering
    Castillo-Paz, Angelica M.
    Gomez-Resendiz, Monserrat
    Canon-Davila, Dorian F.
    Correa-Pina, Brandon A.
    Ramirez-Bon, Rafael
    Rodriguez-Garcia, Mario E.
    CERAMICS INTERNATIONAL, 2023, 49 (21) : 33735 - 33747
  • [42] HYDROXYAPATITE/CARBON BASED BIOCOMPOSITE SCAFFOLDS AS PROSPECTIVE MATERIALS FOR BONE TISSUE ENGINEERING
    Nicoara, Adrian Ionut
    Neacsu, Ionela Andreea
    Ene, Vladimir Lucian
    Vasile, Bogdan Stefan
    Ficai, Anton
    Andronescu, Ecaterina
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES B-CHEMISTRY AND MATERIALS SCIENCE, 2019, 81 (04): : 107 - 120
  • [43] Study on the mechanical and thermal properties of polylactic acid/hydroxyapatite@polydopamine composite nanofibers for tissue engineering
    Hu, Shengyu
    Wu, Jiahui
    Cui, Zhixiang
    Si, Junhui
    Wang, Qianting
    Peng, Xiangfang
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (36)
  • [44] Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering
    Fabbri, Paola
    Bondioli, Federica
    Messori, Massimo
    Bartoli, Cristina
    Dinucci, Dinuccio
    Chiellini, Federica
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2010, 21 (01) : 343 - 351
  • [45] Biocompatible xanthan/polypyrrole scaffolds for tissue engineering
    Bueno, Vania Blasques
    Takahashi, Suelen Harumi
    Catalani, Luiz Henrique
    Cordoba de Torresi, Susana Ines
    Siqueira Petri, Denise Freitas
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 52 : 121 - 128
  • [46] Preparation and characterization of hydroxyapatite/bacterial cellulose nanocomposite scaffolds for bone tissue engineering
    Jiang, Hongjiang
    Wang, Yulin
    Jia, Shiru
    Huang, Yuan
    He, Fang
    Wan, Yizao
    BIOCERAMICS, VOL 19, PTS 1 AND 2, 2007, 330-332 : 923 - +
  • [47] Electrospun bioactive composite scaffolds of hydroxyapatite/poly(ε-caprolactone) for bone tissue engineering
    Li Lingli
    Li Guang
    Jiang Jianming
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON ADVANCED FIBERS AND POLYMER MATERIALS, VOLS 1 AND 2, 2009, : 1291 - 1294
  • [48] Conductive Polyaniline Patterns on Electrospun Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering
    Rajzer, Izabella
    Rom, Monika
    Menaszek, Elzbieta
    Fabia, Janusz
    Kwiatkowski, Ryszard
    MATERIALS, 2021, 14 (17)
  • [49] Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications
    Delabarde, Claire
    Plummer, Christopher J. G.
    Bourban, Pierre-Etienne
    Manson, Jan-Anders E.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2012, 23 (06) : 1371 - 1385
  • [50] Hydrothermal fabrication of hydroxyapatite/chitosan/carbon porous scaffolds for bone tissue engineering
    Long, Teng
    Liu, Yu-Tai
    Tang, Sha
    Sun, Jin-Liang
    Guo, Ya-Ping
    Zhu, Zhen-An
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2014, 102 (08) : 1740 - 1748