Effect of a plasma synthesized polypyrrole coverage on polylactic acid/hydroxyapatite scaffolds for bone tissue engineering

被引:11
|
作者
Flores-Sanchez, Maria G. [1 ]
Islas-Arteaga, Nancy C. [4 ]
Raya-Rivera, Atlantida M. [3 ]
Esquiliano-Rendon, Diego R. [3 ]
Morales-Corona, Juan [2 ]
Uribe-Juarez, Omar E. [4 ]
Vivar-Velazquez, Flor I. [2 ]
Ortiz-Vazquez, Greta P. [5 ]
Olayo, Roberto [2 ]
机构
[1] La Salle Univ Mexico, Dept Invest, Fac Engn, Av Benjamin Franklin 45, Mexico City 06140, DF, Mexico
[2] Univ Autonoma Metropolitana, Dept Phys, Mexico City, DF, Mexico
[3] Child Hosp Mexico Federico Gomez, Dept Tissue Engn, Mexico City, DF, Mexico
[4] Univ Autonoma Metropolitana, Dept Elect Engn, Mexico City, DF, Mexico
[5] New Sanat Durango, Dept Biomed Engn, Mexico City, DF, Mexico
关键词
electrospinning; hydroxyapatite; plasma polymerization; polylactic acid; polypyrrole; PLURIPOTENT STEM-CELLS; BIOMATERIALS;
D O I
10.1002/jbm.a.37205
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Composite biomaterials are solids that contain two or more different materials, combining the properties of their components to restore or improve the function of tissues. In this study, we report the generation of electrospun matrices with osteoconductive properties and porosity using the combination of a biodegradable polyester, polylactic acid (PLA), and hydroxyapatite (HA). Additionally, we report the effects of modifying these matrices through plasma polymerization of pyrrole on the growth and osteogenic differentiation of rabbit bone marrow stem cells. Cells were isolated, seeded and cultured on biomaterials for periods between 7 and 28 days. The matrices we obtained were formed by nano and microfibers containing up to 35.7 wt% HA, presenting a variety of apparent pore sizes to allow for the passage of nutrients to bone cells. Scanning electron microscopy showed that the fibers were coated with polypyrrole doped with iodine, and MTT assay demonstrated this increased cell proliferation and significantly improved cell viability due to the adhesive properties of the polymer. Our results show that PLA/HA/Pyrrole/Iodine matrices are favorable for bone tissue engineering.
引用
收藏
页码:2199 / 2211
页数:13
相关论文
共 50 条
  • [31] Low temperature hydroxyapatite/gelatine robocasted scaffolds for bone tissue engineering
    Maazouz, Y.
    Montufar, E. B.
    Fernandez, F.
    Ginebra, M. P.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 : 212 - 212
  • [32] Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering
    Sánchez-Salcedo, S.
    Nieto, A.
    Vallet-Regí, M.
    Chemical Engineering Journal, 2008, 137 (01): : 62 - 71
  • [33] HYDROXYAPATITE SCAFFOLDS FOR BONE TISSUE ENGINEERING WITH CONTROLLED POROSITY AND MECHANICAL STRENGTH
    Sglavo, Vincenzo M.
    Piccinini, Marzio
    Madinelli, Andrea
    Bucciotti, Francesco
    ADVANCES IN BIOCERAMICS AND POROUS CERAMICS IV, 2011, 32 : 95 - 99
  • [34] Surface quality and biocompatibility of porous hydroxyapatite scaffolds for bone tissue engineering
    Wu, Bin
    Braun, Anne
    Ediger, Simon
    Huang, Wei
    Lilischkis, Rainer
    Schaefer, Karl-Herbert
    Wu, Quan
    Zhang, Xianglin
    Saumer, Monika
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (05): : 957 - 963
  • [35] Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering
    Sanchez-Salcedo, S.
    Nieto, A.
    Vallet-Regi, M.
    CHEMICAL ENGINEERING JOURNAL, 2008, 137 (01) : 62 - 71
  • [36] Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering
    Denys A. Wahl
    Eleftherios Sachlos
    Chaozong Liu
    Jan T. Czernuszka
    Journal of Materials Science: Materials in Medicine, 2007, 18 : 201 - 209
  • [37] Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications
    Fu, Qiang
    Rahaman, Mohamed N.
    Dogan, Fatih
    Bal, B. Sonny
    BIOMEDICAL MATERIALS, 2008, 3 (02)
  • [38] Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering
    Park, Minsung
    Lee, Dajung
    Shin, Sungchul
    Hyun, Jinho
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2015, 130 : 222 - 228
  • [39] Effect of microporosity on scaffolds for bone tissue engineering
    Zhang, Ke
    Fan, Yubo
    Dunne, Nicholas
    Li, Xiaoming
    REGENERATIVE BIOMATERIALS, 2018, 5 (02) : 115 - 124
  • [40] Biomimetic, mussel-inspired surface modification of 3D-printed biodegradable polylactic acid scaffolds with nano-hydroxyapatite for bone tissue engineering
    Chi, Minghan
    Li, Na
    Cui, Junkui
    Karlin, Sabrina
    Rohr, Nadja
    Sharma, Neha
    Thieringer, Florian M.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10