An introduction to constant curvature spaces in the commutative (Segre) quaternion geometry

被引:17
作者
Catoni, Francesco [1 ]
Cannata, Roberto [1 ]
Zampetti, Paolo [1 ]
机构
[1] ENEA, Ctr Ric Casaccia, I-00060 Rome, Italy
关键词
Line Element; Constant Curvature; Geodesic Equation; Geodesic Line; Quaternion Space;
D O I
10.1007/s00006-006-0010-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that complex numbers can be associated with plane Euclidean geometry and their functions are successfully used for studying extensions of Euclidean geometry, i.e., non-Euclidean geometries and surfaces differential geometry. In this paper we begin to study the constant curvature spaces associated with the geometry generated by commutative elliptic-quaternions and we show how the "mathematics" they generate allows us to introduce these spaces and obtain the geodesic equations without developing a complete mathematical apparatus as the one developed for Riemannian geometry.
引用
收藏
页码:85 / 101
页数:17
相关论文
共 15 条
[1]  
[Anonymous], 1922, LEZIONI GEOMETRIA DI
[2]  
BELTRAMI E, 2004, OPERE MATEMATICHE, V2, P74
[3]  
BOCCALETTI D, 2005, GEN RELATIVITY GRAVI, V37
[4]   Lorentz surfaces with constant curvature and their physical interpretation [J].
Catoni, F ;
Cannata, R ;
Catoni, V ;
Zampetti, P .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2005, 120 (01) :37-51
[5]  
CATONI F, 2001, HYPERBOLIC VARIABLES
[6]   An introduction to commutative quaternions [J].
Catoni, Francesco ;
Cannata, Roberto ;
Zarnpetti, Paolo .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2006, 16 (01) :1-28
[7]  
Chabat B., 1990, INTRO ANAL COMPLEXE, V1
[8]  
DOUBROVINE B, 1985, CEOMETRIE CONLEMPORA, V1
[9]  
Eisenhart L. P., 1949, Riemannian Geometry
[10]  
Eisenhart LP., 1927, Non-Riemannian Geometry