Generalized radial basis function neural network based on an improved dynamic particle swarm optimization and AdaBoost algorithm

被引:64
作者
Lu, Jinna [1 ,2 ]
Hu, Hongping [2 ]
Bai, Yanping [2 ]
机构
[1] North Univ China, Sch Informat & Commun Engn, Taiyuan 030051, Shanxi, Peoples R China
[2] North Univ China, Dept Math, Taiyuan 030051, Shanxi, Peoples R China
关键词
Generalized radial basis function; Dynamic particle swarm optimization; Exponential decreasing inertia weight; AdaBoost algorithm; EXTREME LEARNING-MACHINE; PERFORMANCE; PREDICTION; PARAMETER;
D O I
10.1016/j.neucom.2014.10.065
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an improved dynamic particle swarm optimization algorithm, which uses a new and effective exponential decreasing inertia weight (EDIW) strategy. Based on the improved EDIW-PSO algorithm together with AdaBoost algorithm, we adjust the parameters (centers, widths, shape parameters and connection weights) of GRBF and present a novel hybrid EDIW-PSO-AdaBoost-GRBF model. Two application examples are given on the proposed model. The results obtained show that the proposed model is effective and feasible for prediction problems. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:305 / 315
页数:11
相关论文
共 35 条
  • [11] Foreword
    Chen, Sinn-wen
    Chada, Srinivas
    Chen, Chih-ming
    Flandorfer, Hans
    Lindsay Greer, A.
    Lee, Jae-Ho
    Zeng, Kejun
    Suganuma, Katsuaki
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2009, 38 (01) : 1 - 1
  • [12] Eberhart R., P 6 INT S MICROMACHI, P39, DOI DOI 10.1109/MHS.1995.494215
  • [13] Parameter estimation of q-Gaussian Radial Basis Functions Neural Networks with a Hybrid Algorithm for binary classification
    Fernandez-Navarro, Francisco
    Hervas-Martinez, Cesar
    Gutierrez, Pedro A.
    Pena-Barragan, Jose M.
    Lopez-Granados, Francisca
    [J]. NEUROCOMPUTING, 2012, 75 (01) : 123 - 134
  • [14] MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks
    Fernandez-Navarro, Francisco
    Hervas-Martinez, Cesar
    Sanchez-Monedero, Javier
    Antonio Gutierrez, Pedro
    [J]. NEUROCOMPUTING, 2011, 74 (16) : 2502 - 2510
  • [15] A decision-theoretic generalization of on-line learning and an application to boosting
    Freund, Y
    Schapire, RE
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 55 (01) : 119 - 139
  • [16] An efficient self-organizing RBF neural network for water quality prediction
    Han, Hong-Gui
    Chen, Qi-li
    Qiao, Jun-Fei
    [J]. NEURAL NETWORKS, 2011, 24 (07) : 717 - 725
  • [17] Global and local modelling in RBF networks
    Herrera, L. J.
    Pomares, H.
    Rojas, I.
    Guillen, A.
    Rubio, G.
    Urquiza, J.
    [J]. NEUROCOMPUTING, 2011, 74 (16) : 2594 - 2602
  • [18] Optimization method based extreme learning machine for classification
    Huang, Guang-Bin
    Ding, Xiaojian
    Zhou, Hongming
    [J]. NEUROCOMPUTING, 2010, 74 (1-3) : 155 - 163
  • [19] Kaiyou Lei, 2006, First International Symposium on Systems and Control in Aerospace and Astronautics (IEEE Cat. No.06EX1168C)
  • [20] Approximated fast estimator for the shape parameter of generalized Gaussian distribution
    Krupinski, R
    Purczynski, J
    [J]. SIGNAL PROCESSING, 2006, 86 (02) : 205 - 211