The Gerischer finite length impedance: A case of unequal diffusion coefficients

被引:16
|
作者
Pototskaya, V. V. [1 ]
Gichan, O. I. [2 ]
机构
[1] Natl Acad Sci Ukraine, Vernadskii Inst Gen & Inorgan Chem, Palladina Prosp 32-34, UA-03142 Kiev 142, Ukraine
[2] Natl Acad Sci Ukraine, Chuiko Inst Surface Chem, Henerala Naumova Str 17, UA-03164 Kiev 164, Ukraine
关键词
Gerischer impedance; CE mechanism; Nernst diffusion layer; Kinetic layer; ELECTROCHEMICAL IMPEDANCE; GALVANIC CELLS; ELECTRODE; SPECTROSCOPY; DEPENDENCE; ELEMENT;
D O I
10.1016/j.jelechem.2019.113511
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This work is devoted to the theoretical study of the impedance response associated with coupled homogeneous first-order chemical reaction in diffusion layer and reversible heterogeneous electrochemical reaction (CE mechanism). For the first time, the exact analytical expression for the Gerischer finite length impedance is obtained for different diffusion coefficients of the species involved in the homogeneous first-order chemical reaction. In a general case, the Gerischer finite length impedance has two capacitive loops, one associated with the diffusion of the inactive species and the other with the homogeneous chemical reaction. The effect of the diffusion coefficients difference is observed at low frequencies. At high frequencies, the impedance behavior is determined by the diffusion coefficient of the active species. At low chemical reaction rate constants, the classic behavior of the Gerischer impedance is observed in the complex plane. The position of the zero-frequency point in the Nyquist plot is determined by the thickness of the kinetic (reaction) layer. The obtained results can be applied for a better understanding of reaction-diffusion impedance, especially during analysis of the parameters extracted from low frequency range of impedance.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] SOFC-anodes, proof for a finite-length type Gerischer impedance?
    Boukamp, B. A.
    Verbraeken, M.
    Blank, D. H. A.
    Holtappels, P.
    SOLID STATE IONICS, 2006, 177 (26-32) : 2539 - 2541
  • [2] On the Origin of Phase Angle in Warburg Finite Length Diffusion Impedance
    Pototskaya, V. V.
    Gichan, O., I
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (08): : 8195 - 8205
  • [3] Low-frequency approximations to the finite-length Warburg diffusion impedance: The reflexive case
    Moya, A. A.
    JOURNAL OF ENERGY STORAGE, 2024, 97
  • [4] Impedance of finite length resistor
    Krinsky, S
    Podobedov, B
    Gluckstern, RL
    2005 IEEE PARTICLE ACCELERATOR CONFERENCE (PAC), VOLS 1-4, 2005, : 991 - 993
  • [5] Anomalous diffusion and memory effects on the impedance spectroscopy for finite-length situations
    Evangelista, L. R.
    Lenzi, E. K.
    Barbero, G.
    Macdonald, J. R.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (48)
  • [6] Double potential step chronoamperometry at microdisk electrodes: simulating the case of unequal diffusion coefficients
    Klymenko, OV
    Evans, RG
    Hardacre, C
    Svir, IB
    Compton, RG
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2004, 571 (02) : 211 - 221
  • [7] INCREMENTAL LENGTH DIFFRACTION COEFFICIENTS FOR AN IMPEDANCE WEDGE
    PELOSI, G
    MACI, S
    TIBERIO, R
    MICHAELI, A
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (10) : 1201 - 1210
  • [8] Impedance of finite length resistive cylinder
    Krinsky, S
    Podobedov, B
    Gluckstern, RL
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2004, 7 (11): : 23 - 31
  • [9] Theory of generalized Gerischer impedance for quasi-reversible charge transfer at rough and finite fractal electrodes
    Chowdhury, Niladri Roy
    Kant, Rama
    ELECTROCHIMICA ACTA, 2018, 281 : 445 - 458
  • [10] Why impedance of the gas diffusion layer in a PEM fuel cell differs from the Warburg finite-length impedance?
    Kulikovsky, Andrei
    ELECTROCHEMISTRY COMMUNICATIONS, 2017, 84 : 28 - 31