Embeddings of polyhedra in Rm and the deleted product obstruction

被引:16
作者
Segal, J
Skopenkov, A
Spiez, S
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Moscow MV Lomonosov State Univ, Dept Mech & Math, Chair Differential Geometry, Moscow 119899, Russia
[3] Polish Acad Sci, Inst Math, PL-00950 Warsaw, Poland
关键词
embedding; quasi embedding; deleted product; finger move; Smith index; Whitehead product; Hilton's theorem;
D O I
10.1016/S0166-8641(97)00157-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Weber has proved that if 2m greater than or equal to 3(n + 1) then an n-dimensional polyhedron K embeds in R-m if and only if there exists an equivariant map from the deleted product K* into the sphere Sm-1. As a consequence he has obtained that in the same range of dimensions an n-dimensional polyhedron embeds in R-m if and only if it quasi embeds in R-m. We show that for m greater than or equal to max(4, n) the dimension restrictions in Weber's results are necessary in all cases. This leaves only two open cases remaining (namely m = 3 and n = 2 or 3) in related questions al,out embeddings. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:335 / 344
页数:10
相关论文
共 43 条
  • [1] Borsuk K., 1933, FUND MATH, V21, P236
  • [2] BRYANT RL, 1972, T AM MATH SOC, V170, P85
  • [3] CASSON AJ, 1986, PROGR MATH, V62, P201
  • [4] CERNAVSKII AV, 1969, MATH USSR SB, V9, P321
  • [5] CERNAVSKII AV, 1969, MAT SBORNIK, V80, P339
  • [6] Peanian continua not imbeddable in a spherical surface
    Claytor, S
    [J]. ANNALS OF MATHEMATICS, 1937, 38 : 631 - 646
  • [7] CURTIS ML, 1961, P AM MATH SOC, V12, P819, DOI DOI 10.1090/S0002-9939-1961-0126286-4
  • [8] Flores A., 1935, ERGEB MATH K, V6, P4
  • [9] FOMENKO AT, 1989, COURSE HOMOTROPIC TO
  • [10] Freedman MH, 1994, MATH RES LETT, V1, P167