NEW BOUNDARY VALUE PROBLEMS FOR FOURTH-ORDER QUASI-HYPERBOLIC EQUATIONS

被引:7
作者
Kozhanov, Alexandr Ivanovich [1 ]
Koshanov, Bahytbek [2 ]
Sultangazieva, Janat [3 ]
机构
[1] Sobolev Inst Math, 4 Koptyuga Ave, Novosibirsk 630090, Russia
[2] Inst Math & Math Modeling, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
[3] Abai Pedag Univ, 13 Dostyk Ave, Alma Ata 050010, Kazakhstan
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2019年 / 16卷
关键词
fourth-order quasi-hyperbolic equations; regular solutions; existence; uniqueness;
D O I
10.33048/semi.2019.16.098
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the correctness in the spaces of S.L. Sobolev of new boundary value problems for quasi-hyperbolic differential equations u(tttt )+ Au = f(x, t) (A is an elliptic operator acting on spatial variables). For the proposed tasks theorems on the existence and uniqueness of solutions are proved, and examples of non-uniqueness are given.
引用
收藏
页码:1410 / 1436
页数:27
相关论文
共 10 条
  • [1] [Anonymous], 2003, PARTIAL DIFFERENTIAL
  • [2] Egorov I.E., 1995, NEKLASSICHESKIE URAV
  • [3] Boundary-Value Problems for Some Higher-Order Nonclassical Differential Equations
    Kozhanov, A. I.
    Pinigina, N. R.
    [J]. MATHEMATICAL NOTES, 2017, 101 (3-4) : 467 - 474
  • [4] BOUNDARY VALUE PROBLEMS FOR CERTAIN CLASSES OF HIGH ORDER COMPOSITE TYPE EQUATIONS
    Kozhanov, A., I
    Pinigina, N. R.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : 842 - 853
  • [5] Ladyzhenskaia O.A., 1968, LINEAR QUASILINEAR E
  • [6] Lions J.L., 1973, SOME METHODS SOLVING
  • [7] Sobolev S. L, 1991, Translations of Mathematical Monographs, V90
  • [8] Sveshnikov A.G., 2004, LEKTSYI MATEMATICHES
  • [9] Vragov V.N., 1978, MATEMATICHESKII ANAL, P5
  • [10] Vragov V.N., 1977, DIFF URAVN, V13, P1098