Approximation of Weak Efficient Solutions in Vector Optimization

被引:1
|
作者
Huerga, Lidia [1 ]
Gutierrez, Cesar [2 ]
Jimenez, Bienvenido [1 ]
Novo, Vicente [1 ]
机构
[1] UNED, ETSI Ind, Dept Matemat Aplicada, C Juan del Rosal 12,Ciudad Univ, Madrid 28040, Spain
[2] Univ Valladolid, ETS Ingenieros Telecomunicac, Dept Matemat Aplicada, E-47011 Valladolid, Spain
来源
MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES - MCO 2015, PT 1 | 2015年 / 359卷
关键词
Vector optimization; weak efficient solution; epsilon-efficient solution; nonlinear scalarization; Kuhn-Tucker optimality conditions; epsilon-subgradients;
D O I
10.1007/978-3-319-18161-5_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a well-known concept of epsilon-efficient solution due to Kutateladze is studied, in order to approximate the weak efficient solutions of vector optimization problems. In particular, it is proved that the limit, in the Painleve-Kuratowski sense, of the epsilon-efficient sets when the precision epsilon tends to zero is the set of weak efficient solutions of the problem. Moreover, several nonlinear scalarization results are derived to characterize the epsilon-efficient solutions in terms of approximate solutions of scalar optimization problems. Finally, the obtained results are applied not only to propose a kind of penalization scheme for Kutateladze's approximate solutions of a cone constrained convex vector optimization problem but also to characterize epsilon-efficient solutions of convex multiobjective problems with inequality constraints via multiplier rules.
引用
收藏
页码:481 / 489
页数:9
相关论文
共 50 条
  • [41] Necessary Conditions for Nondominated Solutions in Vector Optimization
    Bao, Truong Q.
    Huerga, Lidia
    Jimenez, Bienvenido
    Novo, Vicente
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 186 (03) : 826 - 842
  • [42] Existence of Solutions for Vector Optimization on Hadamard Manifolds
    Li-Wen Zhou
    Nan-Jing Huang
    Journal of Optimization Theory and Applications, 2013, 157 : 44 - 53
  • [43] Existence of Solutions for Vector Optimization on Hadamard Manifolds
    Zhou, Li-Wen
    Huang, Nan-Jing
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (01) : 44 - 53
  • [44] On weak sharp minima in vector optimization with applications to parametric problems
    Bednarczuk, Ewa
    CONTROL AND CYBERNETICS, 2007, 36 (03): : 563 - 570
  • [45] REMARKS ABOUT APPROXIMATE SOLUTIONS IN VECTOR OPTIMIZATION
    Bonnel, Henri
    PACIFIC JOURNAL OF OPTIMIZATION, 2009, 5 (01): : 53 - 73
  • [47] Necessary Conditions for Nondominated Solutions in Vector Optimization
    Truong Q. Bao
    Lidia Huerga
    Bienvenido Jiménez
    Vicente Novo
    Journal of Optimization Theory and Applications, 2020, 186 : 826 - 842
  • [48] Optimality conditions for weak ψ-sharp minima in vector optimization problems
    Peng, Z. Y.
    Xu, S.
    Long, X. J.
    POSITIVITY, 2013, 17 (03) : 475 - 482
  • [49] Conditions for the stability of ideal efficient solutions in parametric vector optimization via set-valued inclusions
    Amos Uderzo
    Journal of Global Optimization, 2023, 85 : 917 - 940
  • [50] Primal and dual approximation algorithms for convex vector optimization problems
    Andreas Löhne
    Birgit Rudloff
    Firdevs Ulus
    Journal of Global Optimization, 2014, 60 : 713 - 736