Approximation of Weak Efficient Solutions in Vector Optimization

被引:1
|
作者
Huerga, Lidia [1 ]
Gutierrez, Cesar [2 ]
Jimenez, Bienvenido [1 ]
Novo, Vicente [1 ]
机构
[1] UNED, ETSI Ind, Dept Matemat Aplicada, C Juan del Rosal 12,Ciudad Univ, Madrid 28040, Spain
[2] Univ Valladolid, ETS Ingenieros Telecomunicac, Dept Matemat Aplicada, E-47011 Valladolid, Spain
来源
MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES - MCO 2015, PT 1 | 2015年 / 359卷
关键词
Vector optimization; weak efficient solution; epsilon-efficient solution; nonlinear scalarization; Kuhn-Tucker optimality conditions; epsilon-subgradients;
D O I
10.1007/978-3-319-18161-5_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a well-known concept of epsilon-efficient solution due to Kutateladze is studied, in order to approximate the weak efficient solutions of vector optimization problems. In particular, it is proved that the limit, in the Painleve-Kuratowski sense, of the epsilon-efficient sets when the precision epsilon tends to zero is the set of weak efficient solutions of the problem. Moreover, several nonlinear scalarization results are derived to characterize the epsilon-efficient solutions in terms of approximate solutions of scalar optimization problems. Finally, the obtained results are applied not only to propose a kind of penalization scheme for Kutateladze's approximate solutions of a cone constrained convex vector optimization problem but also to characterize epsilon-efficient solutions of convex multiobjective problems with inequality constraints via multiplier rules.
引用
收藏
页码:481 / 489
页数:9
相关论文
共 50 条
  • [1] On the Existence of Weak Efficient Solutions of Nonconvex Vector Optimization Problems
    Gutierrez, Cesar
    Lopez, Ruben
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 185 (03) : 880 - 902
  • [2] On the Existence of Weak Efficient Solutions of Nonconvex Vector Optimization Problems
    César Gutiérrez
    Rubén López
    Journal of Optimization Theory and Applications, 2020, 185 : 880 - 902
  • [3] VISCOSITY-TYPE APPROXIMATION METHOD FOR EFFICIENT SOLUTIONS IN VECTOR OPTIMIZATION
    Thai Doan Chuong
    Yao, Jen-Chih
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (06): : 2329 - 2342
  • [4] On efficient solutions in vector optimization
    Deng, S
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 96 (01) : 201 - 209
  • [5] On Efficient Solutions in Vector Optimization
    S. Deng
    Journal of Optimization Theory and Applications, 1998, 96 : 201 - 209
  • [6] Efficient and weak efficient points in vector optimization with generalized cone convexity
    Adán, M
    Novo, V
    APPLIED MATHEMATICS LETTERS, 2003, 16 (02) : 221 - 225
  • [7] Existence of weakly efficient solutions in vector optimization
    Lucelina Batista Santos
    Marko Rojas-Medar
    Gabriel Ruiz-Garzón
    Acta Mathematica Sinica, English Series, 2008, 24
  • [8] Existence of weakly efficient solutions in vector optimization
    Santos, Lucelina Batista
    Rojas-Medar, Marko
    Ruiz-Garzon, Gabriel
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (04) : 599 - 606
  • [9] Existence of Weakly Efficient Solutions in Vector Optimization
    Lucelina BATISTA SANTOS
    Marko ROJAS-MEDAR
    Gabriel RUIZ-GARZóN
    ActaMathematicaSinica(EnglishSeries), 2008, 24 (04) : 599 - 606
  • [10] CONNECTEDNESS AND COMPACTNESS OF WEAK EFFICIENT SOLUTIONS FOR VECTOR EQUILIBRIUM PROBLEMS
    Long, Xian Jun
    Peng, Jian Wen
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (06) : 1225 - 1233