f-Statistical approximation to Bogel-type continuous functions

被引:0
作者
Akdag, Sevda [1 ]
机构
[1] Sinop Univ, Fac Arts & Sci, Dept Math, TR-57000 Sinop, Turkey
关键词
f-statistical convergence; the Korovkin type approximation theorem; B-continuity; B-CONTINUOUS FUNCTIONS; SEQUENCE; THEOREM; SPACES; SENSE;
D O I
10.32513/tmj/19322008125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, considering the concept of f-statistical convergence which is a generalization of statistical convergence and is intermediate between the ordinary convergence and the statistical convergence, we obtain a f-statistical approximation theorem for sequences of positive linear operators defined on the space of all real valued B-continuous functions on a compact subset of the real line. Furthermore, we compute the rates of f-statistical convergence with the help mixed modulus of smoothness.
引用
收藏
页码:93 / 103
页数:11
相关论文
共 21 条
[1]   DENSITY BY MODULI AND STATISTICAL CONVERGENCE [J].
Aizpuru, A. ;
Listan-Garcia, M. C. ;
Rambla-Barreno, F. .
QUAESTIONES MATHEMATICAE, 2014, 37 (04) :525-530
[2]   A TEST FUNCTION THEOREM AND APPROXIMATION BY PSEUDOPOLYNOMIALS [J].
BADEA, C ;
BADEA, I ;
GONSKA, HH .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 34 (01) :53-64
[3]  
Badea C, 1991, C MATH SOC JANOS BOL, P51
[4]  
Badea C., 1988, ANAL NUMER THEORY AP, V17, P7
[5]  
Bögel K, 1935, J REINE ANGEW MATH, V173, P5
[6]  
Bogel K, 1934, J REINE ANGEW MATH, V170, P197
[7]   Λ2-Weighted statistical convergence and Korovkin and Voronovskaya type theorems [J].
Braha, Naim L. ;
Loku, Valdete ;
Srivastava, H. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 :675-686
[8]   A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallee Poussin mean [J].
Braha, Naim L. ;
Srivastava, H. M. ;
Mohiuddine, S. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 228 :162-169
[9]  
Demirci K, 2013, GEN MATH, V21, P93
[10]   Approximation in statistical sense to n-variate B-continuous functions by positive linear operators [J].
Dirik, Fadime ;
Demirci, Kamil .
MATHEMATICA SLOVACA, 2010, 60 (06) :877-886