Axial and polar gravitational wave equations in a de Sitter expanding universe by Laplace transform

被引:24
作者
Viaggiu, Stefano [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
关键词
gravitational waves; cosmological constant; de Sitter universe; Regge-Wheeler equation; Laplace transform; RELIC GRAVITONS;
D O I
10.1088/1361-6382/aa5570
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we study the propagation in a de Sitter universe of gravitational waves generated by perturbating some unspecified spherical astrophysical object in the frequencies domain. We obtain the axial and polar perturbation equations in a cosmological de Sitter universe in the usual comoving coordinates, the coordinates we occupy in our galaxy. We write down the relevant equations in terms of Laplace transform with respect to the comoving time t instead of the usual Fourier one that is no longer available in a cosmological context. Both axial and polar perturbation equations are expressed in terms of a non trivial mixture of retarded-advanced metric coefficients with respect to the Laplace parameter s (complex translation). The axial case is studied in more detail. In particular, the axial perturbations can be reduced to a master linear second-order differential equation in terms of the Regge-Wheeler function Z where a coupling with a retarded Z with respect to the cosmological time t is present. It is shown that a de Sitter expanding universe can change the frequency. of a gravitational wave as perceived by a comoving observer. The polar equations are much more involved. Nevertheless, we show that the polar perturbations can also be expressed in terms of four independent integrable differential equations.
引用
收藏
页数:16
相关论文
共 18 条
  • [1] Observation of Gravitational Waves from a Binary Black Hole Merger
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Altin, P. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Arain, M. A.
    Araya, M. C.
    Arceneaux, C. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    Baker, P. T.
    Baldaccini, F.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barclay, S. E.
    Barish, B. C.
    Barker, D.
    Barone, F.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (06)
  • [2] [Anonymous], 2016, PHYS REV D
  • [3] [Anonymous], 2008, COSMOLOGY
  • [4] [Anonymous], ARXIV160301763
  • [5] [Anonymous], PHYS FDN GRAVITY
  • [6] Gravitational Waves from Isolated Systems: Surprising Consequences of a Positive Cosmological Constant
    Ashtekar, Abhay
    Bonga, Beatrice
    Kesavan, Aruna
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (05)
  • [7] de Sitter spacetime: effects of metric perturbations on geodesic motion
    Bini, Donato
    Esposito, Giampiero
    Geralico, Andrea
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2012, 44 (02) : 467 - 490
  • [8] Gravitational waves in a de Sitter universe
    Bishop, Nigel T.
    [J]. PHYSICAL REVIEW D, 2016, 93 (04)
  • [9] ON THE NONRADIAL OSCILLATIONS OF A STAR
    CHANDRASEKHAR, S
    FERRARI, V
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 432 (1885): : 247 - 279
  • [10] Chandrasekhar S, 1983, MATH THEORY BLACK HO