PERIODIC SOLUTIONS FOR A SINGULAR LIENARD EQUATION WITH INDEFINITE WEIGHT

被引:9
作者
Lu, Shiping [1 ]
Xue, Runyu [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
关键词
Lienard equation; Mawhin's continuation theorem; periodic solution; singularity; 2ND-ORDER DIFFERENTIAL-EQUATIONS; EXISTENCE;
D O I
10.12775/TMNA.2019.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the existence of positive periodic solutions is studied for a singular Lienard equation where the weight function has an indefinite sign. Due to the lack of a priori estimates over the set of all possible positive periodic solutions in this equation, a new method is proposed for estimating a priori bounds of positive periodic solutions. By the use of a continuation theorem of the Mawhin coincidence degree, new conditions for existence of positive periodic solutions to the equation are obtained. The main results show that the singularity of coefficient function associated to the friction term at x = 0 may help the existence of periodic solutions.
引用
收藏
页码:203 / 218
页数:16
相关论文
共 29 条
[1]   Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: a topological degree approach for the super-sublinear case [J].
Boscaggin, Alberto ;
Feltrin, Guglielmo ;
Zanolin, Fabio .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (03) :449-474
[2]   Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem [J].
Boscaggin, Alberto ;
Zanolin, Fabio .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (02) :451-478
[3]   Pairs of positive periodic solutions of second order nonlinear equations with indefinite weight [J].
Boscaggin, Alberto ;
Zanolin, Fabio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2900-2921
[4]   Periodic solutions of second order non-autonomous singular dynamical systems [J].
Chu, Jifeng ;
Torres, Pedro J. ;
Zhang, Meirong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 239 (01) :196-212
[5]  
Feltrin G, 2015, ADV DIFFERENTIAL EQU, V20, P937
[6]   On a singular periodic Ambrosetti-Prodi problem [J].
Fonda, Alessandro ;
Sfecci, Andrea .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 149 :146-155
[7]  
Gaines R.E., 1997, LECT NOTES MATH, V568
[8]   PERIODIC-SOLUTIONS OF SOME LIENARD EQUATIONS WITH SINGULARITIES [J].
HABETS, P ;
SANCHEZ, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (04) :1035-1044
[9]  
Hakl R., ADV NONLINEAR STUD
[10]   Periodic Solutions of an Indefinite Singular Equation Arising from the Kepler Problem on the Sphere [J].
Hakl, Robert ;
Zamora, Manuel .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2018, 70 (01) :173-190