Solving combinatorial problems with a constraint functional logic language

被引:0
作者
Fernández, AJ
Hortalá-González, T
Sáenz-Pérez, F
机构
[1] Univ Malaga, Depto Lenguajes & Ciencias Computac, E-29071 Malaga, Spain
[2] Univ Complutense Madrid, Depto Sistemas Informat & Programac, Madrid, Spain
来源
PRACTICAL ASPECTS OF DECLARATIVE LANGUAGES, PROCEEDINGS | 2003年 / 2562卷
关键词
constraints; functional logic programming; finite domains;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper describes a proposal to incorporate finite domain constraints in a functional logic system. The proposal integrates functions, higher-order patterns, partial applications, non-determinism, logical variables, currying, types, lazyness, domain variables, constraints and finite domain propagators. The paper also presents TOY(FD), an extension of the functional logic language TOY that provides FD constraints, and shows, by examples, that TOY(FD) combines the power of constraint logic programming with the higher-order characteristics of functional logic programming.
引用
收藏
页码:320 / 338
页数:19
相关论文
共 50 条
[41]   Liberal Typing for Functional Logic Programs [J].
Lopez-Fraguas, Francisco ;
Martin-Martin, Enrique ;
Rodriguez-Hortala, Juan .
PROGRAMMING LANGUAGES AND SYSTEMS, 2010, 6461 :80-96
[42]   Reporting Failures in Functional Logic Programs [J].
Hanus, Michael .
ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2007, 177 (01) :59-73
[43]   Epsilon Dominance and Constraint Partitioning in Multiple Objective Problems [J].
D. J. White .
Journal of Global Optimization, 1998, 12 :435-448
[44]   A unified theory of structural tractability for constraint satisfaction problems [J].
Cohen, David ;
Jeavons, Peter ;
Gyssens, Marc .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2008, 74 (05) :721-743
[45]   Dynamic agent ordering in distributed constraint satisfaction problems [J].
Zhou, LZ ;
Thornton, J ;
Sattar, A .
AI 2003: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2003, 2903 :427-439
[46]   Epsilon dominance and constraint partitioning in multiple objective problems [J].
White, DJ .
JOURNAL OF GLOBAL OPTIMIZATION, 1998, 12 (04) :435-448
[47]   Constraint-aware neural networks for Riemann problems [J].
Magiera, Jim ;
Ray, Deep ;
Hesthaven, Jan S. ;
Rohde, Christian .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 409
[48]   Solving timetabling problems using genetic algorithms [J].
Karova, M .
27TH INTERNATIONAL SPRING SEMINAR ON ELECTRONICS TECHNOLOGY, BOOKS 1-3, CONFERENCE PROCEEDINGS: MEETING THE CHALLENGES OF ELECTRONICS TECHNOLOGY PROGRESS, 2004, :96-98
[49]   Using UML and OCL for representing multiobjective combinatorial optimization problems [J].
Eracar, Yoenet A. ;
Kokar, Mieczyslaw M. .
JOURNAL OF INTELLIGENT MANUFACTURING, 2014, 25 (03) :555-569
[50]   Solving Symbolic Regression Problems with Formal Constraints [J].
Bladek, Iwo ;
Krawiec, Krzysztof .
PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, :977-984