A Kantorovich-type analysis for a fast iterative method for solving nonlinear equations

被引:22
作者
Argyros, Ioannis K. [1 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
关键词
Banach space; majorant principle; secant method; locallsemilocal convergence; radius of convergence; Lipschitz conditions; divided differences;
D O I
10.1016/j.jmaa.2006.09.075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We revisit a fast iterative method studied by us in [I.K. Argyros, On a two-point Newton-like method of convergent order two, Int. J. Comput. Math. 88 (2) (2005) 219-234] to approximate solutions of nonlinear operator equations. The method uses only divided differences of order one and two function evaluations per step. This time we use a simpler Kantorovich-type analysis to establish the quadratic convergence of the method in the local as well as the semilocal case. Moreover we show that in some cases our method compares favorably, and can be used in cases where other methods using similar information cannot [S. Amat, S. Busquier, V.F. Candela, A class of quasi-Newton generalized Steffensen's methods on Banach spaces, J. Comput. Appl. Math. 149 (2) (2002) 397-406; D. Chen, On the convergence of a class of generalized Steffensen's iterative procedures and error analysis, Int. J. Comput. Math. 31 (1989) 195-203]. Numerical examples are provided to justify the theoretical results. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 21 条
[1]   On the local convergence of Secant-type methods [J].
Amat, S ;
Busquier, S ;
Gutiérrez, JM .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (09) :1153-1161
[2]   A modified secant method for semismooth equations [J].
Amat, S ;
Busquier, S .
APPLIED MATHEMATICS LETTERS, 2003, 16 (06) :877-881
[3]   On a higher order Secant method [J].
Amat, S ;
Busquier, S .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 141 (2-3) :321-329
[4]   A class of quasi-Newton generalized Steffensen methods on Banach spaces [J].
Amat, S ;
Busquier, S ;
Candela, V .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 149 (02) :397-406
[5]  
Anderson N., 1973, BIT (Nordisk Tidskrift for Informationsbehandling), V13, P253, DOI 10.1007/BF01951936
[6]  
Argyros I. K., 2005, APPROXIMATE SOLUTION
[7]   On a two-point Newton-like method of convergent order two [J].
Argyros, IK .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2005, 82 (02) :219-233
[8]   A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space [J].
Argyros, IK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (02) :374-397
[9]  
Brent R. P., 1973, ALGORITHMS MINIMIZAT
[10]  
Catinas E., 1994, Rev. Anal. Numer. Theor. Approx., V23, P47