The Dirichlet problem for harmonic maps between Damek-Ricci spaces

被引:4
作者
Ueno, K [1 ]
机构
[1] Yamagata Univ, Fac Sci, Inst Math Sci, Yamagata 990, Japan
关键词
D O I
10.2748/tmj/1178225062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Damek-Ricci space has nonpositive curvature. Thus we can consider the Eberlein-O'Neill compactifications adding the sphere at infinity. In this paper, we prove the existence and uniqueness of a solution to the Dirichlet problem at infinity for harmonic maps between Damek-Ricci spaces.
引用
收藏
页码:565 / 575
页数:11
相关论文
共 17 条
[1]   HARMONIC DIFFEOMORPHISMS OF THE HYPERBOLIC PLANE [J].
AKUTAGAWA, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 342 (01) :325-342
[2]  
BERNDT J, 1995, LECT NOTES MATH, V1598
[3]  
BOGGINO J, 1995, REND SEM MAT U POLIT, V43, P529
[4]   H-TYPE GROUPS AND IWASAWA DECOMPOSITIONS [J].
COWLING, M ;
DOOLEY, AH ;
KORANYI, A ;
RICCI, F .
ADVANCES IN MATHEMATICS, 1991, 87 (01) :1-41
[5]   A CLASS OF NONSYMMETRIC HARMONIC RIEMANNIAN SPACES [J].
DAMEK, E ;
RICCI, F .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :139-142
[6]  
DAMEK E, 1992, J GEOM ANAL, V0002, P00213, DOI DOI 10.1007/BF02921294
[7]  
DAMEK E, 1987, C MATH, V53, P255
[8]  
DAMEK E, 1987, COLLOQ MATH, V53, P249
[10]  
DOTTI I, IN PRESS P AM MATH S