Signed Complete Graphs with Negative Paths

被引:0
作者
Dalvandi, S. [1 ]
Heydari, F. [1 ]
Maghasedi, M. [1 ]
机构
[1] Islamic Azad Univ, Karaj Branch, Dept Math, Math, Karaj, Iran
关键词
Signed graph; complete graph; path; adjacency matrix; EIGENVALUES;
D O I
10.30495/JME.2021.1305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma = (G, sigma) be a signed graph, where G is the underlying simple graph and sigma : E(G) -> {- , +} is the sign function on the edges of G. The adjacency matrix of a signed graph has -1 or +1 for adjacent vertices, depending on the sign of the connecting edges. Let Gamma = (K-n, boolean OR(m)(i=1) P-ri(-)) be a signed complete graph whose negative edges induce a subgraph which is the disjoint union of m distinct paths. In this paper, by a constructive method, we obtain n -1 + Sigma(m)(i=1) (left perpendicular r(i)/2 right perpendicular - r(i)) eigenvalues of Gamma, where left perpendicular x right perpendicular denotes the largest integer less than or equal to x.
引用
收藏
页码:127 / 136
页数:10
相关论文
共 50 条
  • [1] On the eigenvalues of signed complete graphs
    Akbari, S.
    Dalvandi, S.
    Heydari, F.
    Maghasedi, M.
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (03) : 433 - 441
  • [2] SIGNED COMPLETE GRAPHS WITH MAXIMUM INDEX
    Akbari, Saieed
    Dalvandi, Soudabeh
    Heydari, Farideh
    Maghasedi, Mohammad
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (02) : 393 - 403
  • [3] On the Multiplicity of-1 and 1 in Signed Complete Graphs
    Akbari, S.
    Dalvandi, S.
    Heydari, F.
    Maghasedi, M.
    UTILITAS MATHEMATICA, 2020, 116 : 21 - 32
  • [4] On the eigenvalues of complete bipartite signed graphs
    Pirzada, Shariefuddin
    Shamsher, Tahir
    Bhat, Mushtaq A.
    ARS MATHEMATICA CONTEMPORANEA, 2024, 24 (04)
  • [5] On the Spectrum of Some Signed Complete and Complete Bipartite Graphs
    Akbari, S.
    Maimani, H. R.
    Majd, L. Parsaei
    FILOMAT, 2018, 32 (17) : 5817 - 5826
  • [6] Signed Complete Graphs with Exactly m Non-negative Eigenvalues
    S. Dalvandi
    F. Heydari
    M. Maghasedi
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 2107 - 2122
  • [7] Signed Complete Graphs with Exactly m Non-negative Eigenvalues
    Dalvandi, S.
    Heydari, F.
    Maghasedi, M.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (05) : 2107 - 2122
  • [8] On double domination numbers of signed complete graphs
    Sehrawat, Deepak
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [9] The Net Laplacian Spectra of Signed Complete Graphs
    Ou, Li
    Hou, Yaoping
    Xiong, Zhuang
    CONTEMPORARY MATHEMATICS, 2021, 2 (04): : 409 - 417
  • [10] Decomposition of complete graphs into paths and stars
    Shyu, Tay-Woei
    DISCRETE MATHEMATICS, 2010, 310 (15-16) : 2164 - 2169