SUFFICIENT CONDITIONS FOR CERTAIN STRUCTURAL PROPERTIES OF GRAPHS BASED ON WIENER-TYPE INDICES

被引:0
作者
Deng, Hanyuan [1 ]
Kuang, Meijun [1 ]
Wu, Renfang [1 ]
Huang, Guihua [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
关键词
Wiener-type invariant; degree sequence; cycle; path; Hamiltonian cycle; TOPOLOGICAL INDEXES; HARARY INDEX; DISTANCE; PATHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a simple connected graph with vertex set V and edge set E. The Wiener-type invariants of G = (V, E) can be expressed in terms of the quantities W-f = Sigma({u, v}subset of V) f (d(G) (u, v)), for various choices of the function f, where d(G)(u,v) is the distance between the vertices u and v in G. In this paper, we establish sufficient conditions based on Wiener-type indices under which every path of length r is contained in a Hamiltonian cycle and under which a bipartite graph on n + m, m > n, vertices contains a cycle of size 2n.
引用
收藏
页码:9 / 18
页数:10
相关论文
共 23 条
[1]  
[Anonymous], 1979, COMPUTERS INTRACTABI
[2]  
[Anonymous], 1972, Journal of combinatorial theory, DOI DOI 10.1016/0095-8956(72)90020-2
[3]  
Bondy A., 2008, GRAPH THEORY
[4]  
Diudea MV, 1997, MATCH-COMMUN MATH CO, P41
[5]  
Diudea MV, 1998, CROAT CHEM ACTA, V71, P21
[6]   Wiener index of hexagonal systems [J].
Dobrynin, AA ;
Gutman, I ;
Klavzar, S ;
Zigert, P .
ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (03) :247-294
[7]   Wiener index of trees: Theory and applications [J].
Dobrynin, AA ;
Entringer, R ;
Gutman, I .
ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) :211-249
[8]   CYCLES AND PATHS THROUGH SPECIFIED VERTICES IN KAPPA-CONNECTED GRAPHS [J].
EGAWA, Y ;
GLAS, R ;
LOCKE, SC .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 52 (01) :20-29
[9]  
Grotschel M., 1977, ANN DISCRETE MATH, V1, P233
[10]  
Gutman I, 1997, INDIAN J CHEM A, V36, P128