Hyperbolicity of Minimizers and Regularity of Viscosity Solutions for a Random Hamilton-Jacobi Equation

被引:12
作者
Khanin, Konstantin [1 ]
Zhang, Ke [1 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
关键词
LYAPUNOV EXPONENTS;
D O I
10.1007/s00220-017-2919-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that for a large class of randomly kicked Hamilton-Jacobi equations, the unique global minimizer is almost surely hyperbolic. Furthermore, we prove that the unique forward and backward viscosity solutions, though in general only Lipshitz, are smooth in a neighborhood of the global minimizer. Related results in the one-dimensional case were obtained by E, Khanin et al. (Ann Math (2) 151(3):877-960, 2000). However, the methods in the above paper are purely one-dimensional and cannot be extended to the case of higher dimensions. Here we develop a completely different approach.
引用
收藏
页码:803 / 837
页数:35
相关论文
共 17 条
  • [1] [Anonymous], 1939, Leningrad State Univ. Annals Uchenye Zapiski Math. Ser.
  • [2] Lower and upper bounds for the Lyapunov exponents of twisting dynamics: a relationship between the exponents and the angle of Oseledets' splitting
    Arnaud, M. -C.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 : 693 - 712
  • [3] Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures
    Arnaud, M. -C.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (06): : 989 - 1007
  • [4] Arnaud MC, 2010, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, P1653
  • [5] Barreira L., 2007, Encyclopedia of Mathematics and its Applications, V115
  • [6] Burgers turbulence
    Bec, Jeremie
    Khanin, Konstantin
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 447 (1-2): : 1 - 66
  • [7] Bernard P, 2007, MATH RES LETT, V14, P503
  • [8] Symplectic twist maps without conjugate points
    Bialy, ML
    MacKay, RS
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2004, 141 (1) : 235 - 247
  • [9] Convex Hamiltonians without conjugate points
    Contreras, G
    Iturriaga, R
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 901 - 952
  • [10] Fathi A., 2008, The Weak KAM Theorem in Lagrangian Dynamics