ON THE STRUCTURE OF THE SECOND EIGENFUNCTIONS OF THE p-LAPLACIAN ON A BALL

被引:13
作者
Anoop, T. V. [1 ]
Drabek, P. [2 ,3 ]
Sasi, Sarath [4 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 36, Tamil Nadu, India
[2] Univ W Bohemia, Fac Sci Appl, Dept Math, Univ 8, Plzen 30614, Czech Republic
[3] Univ W Bohemia, Fac Sci Appl, NTIS, Univ 8, Plzen 30614, Czech Republic
[4] Natl Inst Sci Educ & Res, Sch Math Sci, Jatni 752050, Odisha, India
关键词
p-Laplacian; nonlinear eigenvalue problem; symmetry properties; shape derivative; variational characterization; EIGENVALUE;
D O I
10.1090/proc/12902
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the second eigenfunctions of the p-Laplacian, p > 1, are not radial on the unit ball in R-N, for any N >= 2. Our proof relies on the variational characterization of the second eigenvalue and a variant of the deformation lemma. We also construct an infinite sequence of eigenpairs {tau(n),.Psi(n)} such that Psi(n) is nonradial and has exactly 2n nodal domains. A few related open problems are also stated.
引用
收藏
页码:2503 / 2512
页数:10
相关论文
共 16 条
[1]  
AZORERO JPG, 1987, COMMUN PART DIFF EQ, V12, P1389
[2]   The second eigenfunction of the p-Laplacian on the disk is not radial [J].
Benedikt, Jiri ;
Drabek, Pavel ;
Girg, Petr .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (12) :4422-4435
[3]  
Chorwadwala A., ARXIV E PRINTS
[4]   GLOBAL BIFURCATION FROM THE EIGENVALUES OF THE P-LAPLACIAN [J].
DELPINO, MA ;
MANASEVICH, RF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 92 (02) :226-251
[5]   On the generalization of the Courant nodal domain theorem [J].
Drábek, P ;
Robinson, SB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 181 (01) :58-71
[6]   Resonance problems for the p-Laplacian [J].
Drábek, P ;
Robinson, SB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 169 (01) :189-200
[7]  
Drabek Pavel, 2013, APPL DIFFERENTIAL EQ
[8]  
Emamizadeh B, 2008, P AM MATH SOC, V136, P1725
[9]  
Ghoussoub Nassif, 1993, CAMBRIDGE TRACTS MAT, V107
[10]  
Kawohl B., 2006, Analysis (Munich), V26, P545, DOI DOI 10.1524/ANLY.2006.26.4.545