Hierarchical Transfer Learning for Multi-label Text Classification

被引:0
|
作者
Banerjee, Siddhartha [1 ]
Akkaya, Cem [1 ]
Perez-Sorrosal, Francisco [1 ]
Tsioutsiouliklis, Kostas [1 ]
机构
[1] Yahoo Res, 701 First Ave, Sunnyvale, CA 94089 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-Label Hierarchical Text Classification (MLHTC) is the task of categorizing documents into one or more topics organized in an hierarchical taxonomy. MLHTC can be formulated by combining multiple binary classification problems with an independent classifier for each category. We propose a novel transfer learning based strategy, HTrans, where binary classifiers at lower levels in the hierarchy are initialized using parameters of the parent classifier and fine-tuned on the child category classification task. In HTrans, we use a Gated Recurrent Unit (GRU)-based deep learning architecture coupled with attention. Compared to binary classifiers trained from scratch, our HTrans approach results in significant improvements of 1% on micro-F1 and 3% on macro-F1 on the RCV1 dataset. Our experiments also show that binary classifiers trained from scratch are significantly better than single multi-label models.
引用
收藏
页码:6295 / 6300
页数:6
相关论文
共 50 条
  • [31] An Effective Deployment of Contrastive Learning in Multi-label Text Classification
    Lin, Nankai
    Qin, Guanqiu
    Wang, Jigang
    Zhou, Dong
    Yang, Aimin
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 8730 - 8744
  • [32] ReliefF for Hierarchical Multi-label Classification
    Slavkov, Ivica
    Karcheska, Jana
    Kocev, Dragi
    Kalajdziski, Slobodan
    Dzeroski, Saso
    NEW FRONTIERS IN MINING COMPLEX PATTERNS, NFMCP 2013, 2014, 8399 : 148 - 161
  • [33] Hierarchical Multi-Label Classification Networks
    Wehrmann, Jonatas
    Cerri, Ricardo
    Barros, Rodrigo C.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [34] Boosting multi-label hierarchical text categorization
    Esuli, Andrea
    Fagni, Tiziano
    Sebastiani, Fabrizio
    INFORMATION RETRIEVAL, 2008, 11 (04): : 287 - 313
  • [35] Boosting multi-label hierarchical text categorization
    Andrea Esuli
    Tiziano Fagni
    Fabrizio Sebastiani
    Information Retrieval, 2008, 11 : 287 - 313
  • [36] TaxoClass: Hierarchical Multi-Label Text Classification Using Only Class Names
    Shen, Jiaming
    Qiu, Wenda
    Meng, Yu
    Shang, Jingbo
    Ren, Xiang
    Han, Jiawei
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 4239 - 4249
  • [37] The importance of the label hierarchy in hierarchical multi-label classification
    Levatic, Jurica
    Kocev, Dragi
    Dzeroski, Saso
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2015, 45 (02) : 247 - 271
  • [38] The importance of the label hierarchy in hierarchical multi-label classification
    Jurica Levatić
    Dragi Kocev
    Sašo Džeroski
    Journal of Intelligent Information Systems, 2015, 45 : 247 - 271
  • [39] Label Correction Strategy on Hierarchical Multi-Label Classification
    Ananpiriyakul, Thanawut
    Poomsirivilai, Piyapan
    Vateekul, Peerapon
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, MLDM 2014, 2014, 8556 : 213 - 227
  • [40] LABEL-AWARE TEXT REPRESENTATION FOR MULTI-LABEL TEXT CLASSIFICATION
    Guo, Hao
    Li, Xiangyang
    Zhang, Lei
    Liu, Jia
    Chen, Wei
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 7728 - 7732