Generalized Gradient Elements for Nonsmooth Optimal Control Problems

被引:0
作者
Khan, Kamil A. [1 ]
Barton, Paul I. [1 ]
机构
[1] MIT, Proc Syst Engn Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC) | 2014年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent advances in nonsmooth sensitivity analysis are extended to describe particular elements of Clarke's generalized gradient for the nonsmooth objective function of a nonsmooth optimal control problem, in terms of states of an auxiliary dynamic system. The considered optimal control problem is a generic nonlinear open-loop problem, in which the cost function and the right-hand side function describing the system dynamics may each be nonsmooth. The desired generalized gradient elements are obtained under two parametric discretizations of the control function: a representation as a linear combination of basis functions, and a piecewise constant representation. If the objective function under either discretization is convex, then the corresponding generalized gradient elements are subgradients, without requiring any convexity assumptions on the system dynamics.
引用
收藏
页码:1887 / 1892
页数:6
相关论文
共 12 条