Alloying effects on structural, magnetic, and electrical/thermal transport properties in MAX-phase Cr2-xMxGeC (M = Ti, V, Mn, Fe, and Mo)

被引:42
作者
Lin, Shuai [1 ]
Huang, Yanan [1 ]
Zu, Lin [1 ]
Kan, Xucai [1 ]
Lin, Jianchao [1 ]
Song, Wenhai [1 ]
Tong, Peng [1 ]
Zhu, Xuebin [1 ]
Sun, Yuping [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
[2] Chinese Acad Sci, High Field Magnet Lab, Hefei 230031, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
MAX-phase; Alloying effect; Structure; Magnetism; Electrical/thermal transport; COMPRESSIVE BEHAVIOR; THERMAL-PROPERTIES; ELASTIC PROPERTIES; EXPANSION; STABILITY; CERAMICS; TI3SIC2; CR2GEC; TI2ALC;
D O I
10.1016/j.jallcom.2016.04.197
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein we systematically investigated the alloying effects on structural, magnetic, and electrical/thermal transport properties in MAX-phase Cr2-xMxGeC (M = Ti, V, Mn, Fe, and Mo). The alloying of M with the larger covalent radius than that of Cr increases lattice constants (a and c) as well as unit cell volume (V) of Cr2-xMxGeC, and vice versa. However, the c/a ratio monotonously decreases with increasing alloying level x, which is due to a larger change of a than that of c. The Pauli paramagnetic ground state of Cr2GeC is confirmed by magnetic measurements and low-temperature specific heat analysis. Interestingly, ferromagnetism can be introduced in Cr2-xMxGeC by doping magnetic elements (Mn and Fe) and nonmagnetic elements (Ti and Mo), which may be due to a reconstruction of the Fermi surface caused by chemical doping. All our samples show a metal-like electrical transport behavior, and the residual resistivity ratio decreases with increasing alloying concentration, which are mainly attributed to the disorders induced by alloying. The change of electron specific heat coefficient is consistent with the change of density state of Fermi surface in Cr2-xMxGeC. In addition, solid-solution scattering is the dominant factor for the behavior of thermal conductivity k(T) in Cr2-xVxGeC, while enhanced phonon scattering induced by alloying is the decisive factor for the change of k(T) in Cr2-xMoxGeC. The positive Seebeck coefficient of Cr2-xVxGeC and Cr2-xMoxGeC may be close related to the decrease of structural anisotropy. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:452 / 461
页数:10
相关论文
共 54 条
[31]   Solid Solubility and Magnetism upon Mn Incorporation in the Bulk Ternary Carbides Cr2AlC and Cr2GaC [J].
Mockute, A. ;
Lu, J. ;
Moon, E. J. ;
Yan, M. ;
Anasori, B. ;
May, S. J. ;
Barsoum, M. W. ;
Rosen, J. .
MATERIALS RESEARCH LETTERS, 2015, 3 (01) :16-22
[32]  
Murray J.L., 1981, Bull. Alloy Phase Diagrams, V2, P174, DOI DOI 10.1007/BF02881474
[33]   New Solid Solution MAX Phases: (Ti0.5, V0.5)3AlC2, (Nb0.5, V0.5)2AlC, (Nb0.5, V0.5)4AlC3 and (Nb0.8, Zr0.2)2AlC [J].
Naguib, M. ;
Bentzel, G. W. ;
Shah, J. ;
Halim, J. ;
Caspi, E. N. ;
Lu, J. ;
Hultman, L. ;
Barsoum, M. W. .
MATERIALS RESEARCH LETTERS, 2014, 2 (04) :233-240
[34]  
Nowotny H., 1970, Prog. Soild State Chem, V2, P27, DOI 10.1016/0022-4596(70)90028-9
[35]  
Pampuch R., 1989, Journal of the European Ceramic Society, V5, P283, DOI 10.1016/0955-2219(89)90022-8
[36]   Synthesis and compressive behavior of Cr2GeC up to 48 GPa [J].
Phatak, Nishad A. ;
Kulkarni, Shrinivas R. ;
Drozd, Vadym ;
Saxena, Surendra K. ;
Deng, Liwei ;
Fei, Yingwei ;
Hu, Jingzhu ;
Luo, Wei ;
Ahuja, Rajeev .
JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 463 (1-2) :220-225
[37]   Synthesis of a new MAX compound (Cr0.5V0.5)2GeC and its compressive behavior up to 49 GPa [J].
Phatak, Nishad A. ;
Saxena, Surendra K. ;
Fei, Yingwei ;
Hu, Jingzhu .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 475 (1-2) :629-634
[38]   Synthesis and structural stability of Ti2GeC [J].
Phatak, Nishad A. ;
Saxena, Surendra K. ;
Fei, Yingwei ;
Hu, Jingzhu .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 474 (1-2) :174-179
[39]   On the elastic properties and mechanical damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2 and Ti2AlC in the 300-1573 K temperature range [J].
Radovic, M. ;
Barsoum, M. W. ;
Ganguly, A. ;
Zhen, T. ;
Finkel, P. ;
Kalidindi, S. R. ;
Lara-Curzio, E. .
ACTA MATERIALIA, 2006, 54 (10) :2757-2767
[40]   Electronic and thermal properties of Ti3Al(C0.5,N0.5)2, Ti2Al(C0.5,N0.5) and Ti2AlN [J].
Scabarozi, T. ;
Ganguly, A. ;
Hettinger, J. D. ;
Lofland, S. E. ;
Amini, S. ;
Finkel, P. ;
El-Raghy, T. ;
Barsoum, M. W. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (07)