Hypersurfaces of constant higher-order mean curvature in M x R

被引:0
作者
de Lima, R. F. [1 ]
Manfio, F. [2 ]
dos Santos, J. P. [3 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Matemat, Natal, RN, Brazil
[2] ICMC Univ Sao Paulo, Sao Carlos, Brazil
[3] Univ Brasilia, Dept Matemat, Brasilia, DF, Brazil
基金
巴西圣保罗研究基金会;
关键词
Higher-order mean curvature; r-minimal; Product space; SURFACES; ALEXANDROV; PRODUCT;
D O I
10.1007/s10231-022-01229-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider hypersurfaces of products M x R with constant rth mean curvature H-r >= 0 (to be called H-r-hypersurfaces), where M is an arbitrary Riemannian n-manifold. We develop a general method for constructing them, and employ it to produce many examples for a variety of manifolds M, including all simply connected space forms and the hyperbolic spaces H-F(m) (rank one symmetric spaces of noncompact type). We construct and classify complete rotational H-r(>= 0)-hypersurfaces in H-F(m) x R and in S-n x R as well. They include spheres, Delaunay-type annuli and, in the case of H-F(m) x R, entire graphs. We also construct and classify complete H-r(>= 0)-hypersurfaces of H-F(m) x R which are invariant by either parabolic isometries or hyperbolic translations. We establish a Jellett-Liebmann-type theorem by showing that a compact, connected and strictly convex H-r-hypersurface of H-n x R or S-n x R (n >= 3) is a rotational embedded sphere. Other uniqueness results for complete H-r-hypersurfaces of these ambient spaces are obtained.
引用
收藏
页码:2979 / 3028
页数:50
相关论文
共 31 条
[11]  
do Carmo M. P., 1970, J DIFFER GEOM, V4, P133
[12]  
Dominguez-Vazquez M., 2018, PREPRINT
[13]  
Dominguez-Vazquez M., PREPRINT
[14]   VISIBILITY MANIFOLDS [J].
EBERLEIN, P ;
ONEILL, B .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 46 (01) :45-109
[15]  
Elbert MF, 2016, MANUSCRIPTA MATH, V149, P507, DOI 10.1007/s00229-015-0794-y
[16]  
Elbert MD, 2015, ANN MAT PUR APPL, V194, P1809, DOI 10.1007/s10231-014-0446-y
[17]  
Espinar JM, 2009, COMMENT MATH HELV, V84, P351
[18]   A tangency principle and applications [J].
Fontenele, F ;
Silva, SL .
ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (01) :213-228
[19]   Einstein hypersurfaces of the Cayley projective plane [J].
Kim, Sinhwi ;
Nikolayevsky, Yuri ;
Park, JeongHyeong .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 69
[20]   QUASICONFORMAL CONJUGACY CLASSES OF PARABOLIC ISOMETRIES OF COMPLEX HYPERBOLIC SPACE [J].
Kim, Youngju .
PACIFIC JOURNAL OF MATHEMATICS, 2014, 270 (01) :129-149