Hypersurfaces of constant higher-order mean curvature in M x R

被引:0
作者
de Lima, R. F. [1 ]
Manfio, F. [2 ]
dos Santos, J. P. [3 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Matemat, Natal, RN, Brazil
[2] ICMC Univ Sao Paulo, Sao Carlos, Brazil
[3] Univ Brasilia, Dept Matemat, Brasilia, DF, Brazil
基金
巴西圣保罗研究基金会;
关键词
Higher-order mean curvature; r-minimal; Product space; SURFACES; ALEXANDROV; PRODUCT;
D O I
10.1007/s10231-022-01229-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider hypersurfaces of products M x R with constant rth mean curvature H-r >= 0 (to be called H-r-hypersurfaces), where M is an arbitrary Riemannian n-manifold. We develop a general method for constructing them, and employ it to produce many examples for a variety of manifolds M, including all simply connected space forms and the hyperbolic spaces H-F(m) (rank one symmetric spaces of noncompact type). We construct and classify complete rotational H-r(>= 0)-hypersurfaces in H-F(m) x R and in S-n x R as well. They include spheres, Delaunay-type annuli and, in the case of H-F(m) x R, entire graphs. We also construct and classify complete H-r(>= 0)-hypersurfaces of H-F(m) x R which are invariant by either parabolic isometries or hyperbolic translations. We establish a Jellett-Liebmann-type theorem by showing that a compact, connected and strictly convex H-r-hypersurface of H-n x R or S-n x R (n >= 3) is a rotational embedded sphere. Other uniqueness results for complete H-r-hypersurfaces of these ambient spaces are obtained.
引用
收藏
页码:2979 / 3028
页数:50
相关论文
共 31 条
[1]   A Hopf differential for constant mean curvature surfaces in S2 x R and H2 x R [J].
Abresch, U ;
Rosenberg, H .
ACTA MATHEMATICA, 2004, 193 (02) :141-174
[2]  
Berard P., 2008, Matematica Contemporanea, Sociedade Brasileira de Matematica, V34, P19
[3]  
Bérard P, 2016, BOLL UNIONE MAT ITAL, V9, P341, DOI 10.1007/s40574-015-0050-0
[4]  
Berndt J., 1995, GEN HEISENBERG GROUP, DOI [10.1007/BFb0076902, DOI 10.1007/BFB0076902]
[5]   MANIFOLDS OF NEGATIVE CURVATURE [J].
BISHOP, RL ;
ONEILL, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :1-&
[6]   Isoparametric hypersurfaces in Damek-Ricci spaces [J].
Carlos Diaz-Ramos, Jose ;
Dominguez-Vazquez, Miguel .
ADVANCES IN MATHEMATICS, 2013, 239 :1-17
[7]  
Cecil TE, 2015, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4939-3246-7
[8]   Embedded positive constant r-mean curvature hypersurfaces in Mm x R [J].
Cheng, X ;
Rosenberg, H .
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2005, 77 (02) :183-199
[9]  
de Lima RF, 2021, ANN MAT PUR APPL, V200, P2385, DOI 10.1007/s10231-021-01085-7
[10]   Embeddedness, convexity, and rigidity of hypersurfaces in product spaces [J].
de Lima, Ronaldo Freire .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2021, 59 (03) :319-344