Boundary Wave Propagator for Compressible Navier-Stokes Equations

被引:7
作者
Liu, Tai-Ping [1 ]
Yu, Shih-Hsien [2 ]
机构
[1] Acad Sinica, Inst Math, Taipei, Taiwan
[2] Natl Univ Singapore, Dept Math, Singapore 117548, Singapore
基金
美国国家科学基金会;
关键词
Compressible Navier-Stokes equation; Initial boundary value problems; Fundamental solution; Master relationship; LARGE-TIME BEHAVIOR; SYSTEMS;
D O I
10.1007/s10208-013-9180-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We derive the boundary Dirichlet-Neumann maps for a model with linear compressible Navier-Stokes equations. Fourier and Laplace transforms are applied to derive the maps in the transformed space. A new classification of the roots of the characteristic polynomial in terms of their analytic properties is needed for the pointwise description of the inversion of the transforms using complex analytic methods. Algebraic manipulations reduce the transformed maps to a matrix of polynomials in characteristic roots over the ring spanned by rational functions in the transform variables and the global non-characteristic roots. This Normal-Tangential decomposition for the transformed Dirichlet-Neumann map gives rise to the new notion of a determinant for the intrinsic wave propagator along the boundary.
引用
收藏
页码:1287 / 1335
页数:49
相关论文
共 11 条
[2]   INITIAL BOUNDARY VALUE PROBLEMS FOR HYPERBOLIC SYSTEMS [J].
KREISS, HO .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1970, 23 (03) :277-&
[3]  
Lang S., 1984, Algebra
[4]  
Liu T.-P., 1997, LARGE TIME BEHAV SOL, V599
[5]  
Liu T.-P., DIRICHLET NEUMANN KE
[6]  
Liu TP, 2006, BULL INST MATH ACAD, V1, P1
[7]  
Liu TP, 2011, BULL INST MATH ACAD, V6, P245
[8]  
Liu TP, 2011, BULL INST MATH ACAD, V6, P115
[9]   The Green's function and large-time behavior of solutions for the one-dimensional Boltzmann equation [J].
Liu, TP ;
Yu, SH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (12) :1543-1608
[10]  
Sakamoto R., 1982, HYPERBOLIC BOUNDARY