Generalized theory of one-dimensional steady-state optical spatial solitons

被引:0
|
作者
Wang, HC [1 ]
Wang, XS [1 ]
She, WL [1 ]
机构
[1] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a generalized soliton theory based on the one-dimensional generalized nonlinear Schrodinger equation, from which one can easily obtain the bright, dark, and grey soliton waveforms, and their existence curves. We show that the forming conditions of spatial solitons are directly dependent on the relationship between the index perturbation and the intensity, no matter whether the index perturbation is positive or negative. Some relevant examples are presented when the solitons are supported by the photoisomerization nonlinearity.
引用
收藏
页码:2441 / 2444
页数:4
相关论文
共 50 条
  • [21] One-Dimensional Steady-State Thermal Model of CNTP Reactor
    Keese, Jacob
    Hollingsworth, D. Keith
    NUCLEAR TECHNOLOGY, 2024, 210 (01) : 165 - 179
  • [23] AN ANALYSIS OF THE ONE-DIMENSIONAL STEADY-STATE GLOW-DISCHARGE
    DAVIES, AJ
    EVANS, JG
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1980, 13 (09) : L161 - L166
  • [24] Nonparaxial one-dimensional spatial solitons
    Blair, S
    CHAOS, 2000, 10 (03) : 570 - 583
  • [25] One-dimensional steady-state bright photovoltaic solitons in LiNbO3:Fe crystal with background illumination
    Zhang, Meizhi
    Lu, Keqing
    Cheng, Guanghua
    Zhang, Yiqi
    Li, Kehao
    Zhang, Lei
    Zhang, Yanpeng
    OPTIK, 2010, 121 (06): : 575 - 580
  • [26] Steady-state multiple dark photovoltaic spatial solitons
    Y. H. Zhang
    K. Q. Lu
    J. B. Guo
    K. H. Li
    B. Y. Liu
    The European Physical Journal D, 2012, 66
  • [27] Steady-state multiple dark photovoltaic spatial solitons
    Zhang, Y. H.
    Lu, K. Q.
    Guo, J. B.
    Li, K. H.
    Liu, B. Y.
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (03):
  • [28] EXISTENCE OF SOLITONS AND GENERALIZED SOLITONS FOR ONE-DIMENSIONAL NONLINEAR EQUATIONS
    SHVARTS, AS
    THEORETICAL AND MATHEMATICAL PHYSICS, 1975, 24 (03) : 868 - 878
  • [29] One-dimensional steady-state flows of a rotating gas and zonal wind
    Ivanov, M. I.
    FLUID DYNAMICS, 2012, 47 (01) : 114 - 119
  • [30] EXISTENCE OF STEADY-STATE SOLUTIONS FOR SOME ONE-DIMENSIONAL CONDUCTION PROBLEMS
    BOBISUD, LE
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 195 (03) : 684 - 701