Riemannian Manifolds with Positive Sectional Curvature

被引:20
作者
Ziller, Wolfgang [1 ]
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
来源
GEOMETRY OF MANIFOLDS WITH NON-NEGATIVE SECTIONAL CURVATURE | 2014年 / 2110卷
基金
美国国家科学基金会;
关键词
COHOMOGENEITY ONE MANIFOLDS; ESCHENBURG SPACES; CURVED MANIFOLDS; CIRCLE-ACTIONS; SYMMETRY; GEOMETRY; TOPOLOGY; 7-MANIFOLDS; 4-MANIFOLDS; DIMENSION;
D O I
10.1007/978-3-319-06373-7_1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Of special interest in the history of Riemannian geometry have been manifolds with positive sectional curvature. In these notes we give a survey of this subject and recent developments. © 2014 Springer International Publishing Switzerland.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 61 条
[11]   A 7-MANIFOLD WITH POSITIVE CURVATURE [J].
Dearricott, Owen .
DUKE MATHEMATICAL JOURNAL, 2011, 158 (02) :307-346
[12]   UNFLAT CONNECTIONS IN 3-SPHERE BUNDLES OVER S4 [J].
DERDZINSKI, A ;
RIGAS, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 265 (02) :485-493
[13]  
DOMBROWSKI: P., 1979, Ast'erisque, V62
[14]  
Eschenburg J.H., 1984, SCHRIFTENR MATH I U, V32, P1
[15]   Free, isometric circle actions on compact symmetric spaces [J].
Eschenburg, JH ;
Kollross, A ;
Shankar, K .
GEOMETRIAE DEDICATA, 2003, 102 (01) :35-44
[16]   NEW EXAMPLES OF MANIFOLDS WITH STRICTLY POSITIVE CURVATURE [J].
ESCHENBURG, JH .
INVENTIONES MATHEMATICAE, 1982, 66 (03) :469-480
[17]  
FINTUSHEL R, 1977, T AM MATH SOC, V230, P147
[18]   Orbifold fibrations of Eschenburg spaces [J].
Florit, Luis A. ;
Ziller, Wolfgang .
GEOMETRIAE DEDICATA, 2007, 127 (01) :159-175
[19]   Topological obstructions to fatness [J].
Florit, Luis A. ;
Ziller, Wolfgang .
GEOMETRY & TOPOLOGY, 2011, 15 (02) :891-925
[20]  
Florit LA, 2009, J EUR MATH SOC, V11, P189