COMPARISON OF DIFFERENT METHODS FOR TISSUE SEGMENTATION IN HISTOPATHOLOGICAL WHOLE-SLIDE IMAGES

被引:0
作者
Bandi, Peter [1 ]
van de Loo, Rob
Intezar, Milad
Geijs, Daan
Ciompi, Francesco
van Ginneken, Bram
van der Laak, Jeroen
Litjens, Geert
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Pathol, Nijmegen, Netherlands
来源
2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017) | 2017年
关键词
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Tissue segmentation is an important pre-requisite for efficient and accurate diagnostics in digital pathology. However, it is well known that whole-slide scanners can fail in detecting all tissue regions, for example due to the tissue type, or due to weak staining because their tissue detection algorithms are not robust enough. In this paper, we introduce two different convolutional neural network architectures for whole slide image segmentation to accurately identify the tissue sections. We also compare the algorithms to a published traditional method. We collected 54 whole slide images with differing stains and tissue types from three laboratories to validate our algorithms. We show that while the two methods do not differ significantly they outperform their traditional counterpart (Jaccard index of 0.937 and 0.929 vs. 0.870, p < 0.01).
引用
收藏
页码:591 / 595
页数:5
相关论文
共 11 条
[1]   Automated Detection of DCIS in Whole-Slide H&E Stained Breast Histopathology Images [J].
Bejnordi, Babak Ehteshami ;
Balkenhol, Maschenka ;
Litjens, Geert ;
Holland, Roland ;
Bult, Peter ;
Karssemeijer, Nico ;
van der Laak, Jeroen A. W. M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (09) :2141-2150
[2]   Foreground Extraction for Histopathological Whole Slide Imaging [J].
Bug, Daniel ;
Feuerhake, Friedrich ;
Merhof, Dorit .
BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, :419-424
[3]   Segmentation and localisation of whole slide images using unsupervised learning [J].
Hiary, Hazem ;
Alomari, Raja S. ;
Chaudhary, Vipin .
IET IMAGE PROCESSING, 2013, 7 (05) :464-471
[4]   Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1026-1034
[5]  
Kingma Diederik P., 2014, arXiv
[6]   Automated detection of prostate cancer in digitized whole-slide images of H&E-stained biopsy specimens [J].
Litjens, G. ;
Bejnordi, B. Ehteshami ;
Timofeeva, N. ;
Swadi, G. ;
Kovacs, I. ;
Hulsbergen-van de Kaa, C. ;
van der Laak, J. .
MEDICAL IMAGING 2015: DIGITAL PATHOLOGY, 2015, 9420
[7]   Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis [J].
Litjens, Geert ;
Sanchez, Clara I. ;
Timofeeva, Nadya ;
Hermsen, Meyke ;
Nagtegaal, Iris ;
Kovacs, Iringo ;
Hulsbergen-van de Kaa, Christina ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen .
SCIENTIFIC REPORTS, 2016, 6
[8]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[9]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[10]   Validation of digital pathology imaging for primary histopathological diagnosis [J].
Snead, David R. J. ;
Tsang, Yee-Wah ;
Meskiri, Aisha ;
Kimani, Peter K. ;
Crossman, Richard ;
Rajpoot, Nasir M. ;
Blessing, Elaine ;
Chen, Klaus ;
Gopalakrishnan, Kishore ;
Matthews, Paul ;
Momtahan, Navid ;
Read-Jones, Sarah ;
Sah, Shatrughan ;
Simmons, Emma ;
Sinha, Bidisa ;
Suortamo, Sari ;
Yeo, Yen ;
El Daly, Hesham ;
Cree, Ian A. .
HISTOPATHOLOGY, 2016, 68 (07) :1063-1072