Improved estimation of elastic attributes from prestack seismic data for reservoir characterization

被引:1
作者
Zhou, Yijie [1 ,2 ]
Ruiz, Franklin [1 ]
Chen, Yequan [1 ]
Xia, Fan [1 ]
机构
[1] SINOPEC Tech Houston LLC, 3050 Post Oak Blvd,Suite 777, Houston, TX 77056 USA
[2] ION Geophys Corp, 2105 CityWest Blvd Suite 100, Houston, TX 77042 USA
关键词
MONTE-CARLO METHOD; ROCK-PHYSICS; INVERSION; POROSITY;
D O I
10.1190/GEO2019-0188.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Seismic derivable elastic attributes, e.g., elastic impedance, lambda-rho, mu-rho, and Poisson impedance (PI), are routinely being used for reservoir characterization practice. These attributes could be derived from inverted V P, V S, and density, and usually indicate high sensitivity to reservoir lithology and fluid. Due to the high sensitivity of such elastic attributes, errors or measurement noise associated with the acquisition, processing, and inversion of prestack seismic data will propagate through the inversion products, and will lead to even larger errors in the computed attributes. To solve this problem, we have developed a two-step cascade workflow that combines linear inversion and nonlinear optimization techniques for the improved estimation of elastic attributes and better prediction and delineation of reservoir lithology and fluids. The linear inversion in the first step is an inversion scheme with a sparseness assumption, based on L1-norm regularization. This step is used to select the major reflective layer locations, followed in the second step by a nonlinear optimization process with the predefined layer structure. The combination of these two procedures produces a reasonable blocky earth model with consistent elastic properties, including the ones that are sensitive to reservoir lithology and fluid change, and thus provides an accurate approach for seismic reservoir characterization. Using PI, as one of the target elastic attributes, as an example, this workflow has been successfully applied to synthetic and field data examples. The results indicate that our workflow improves the estimation of elastic attributes from the noisy prestack seismic data and may be used for the identification of the reservoir lithology and fluid.
引用
收藏
页码:R41 / R53
页数:13
相关论文
共 50 条
[41]   Pore throat size characterization of carbonate reservoirs by integrating core data, well logs and seismic attributes [J].
Hosseinzadeh, Sirous ;
Kadkhodaie, Ali ;
Mossadegh, Hossein ;
Ilkhchi, Rahim Kadkhodaie .
GEOPERSIA, 2019, 9 (02) :395-410
[42]   Estimation of seismic velocities of upper oceanic crust from ocean bottom reflection loss data [J].
Dong, Hefeng ;
Chapman, N. Ross ;
Hannay, David E. ;
Dosso, Stan E. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2010, 127 (04) :2182-2192
[43]   Integration of core data, well logs and seismic attributes for identification of the low reservoir quality units with unswept gas in the carbonate rocks of the world's largest gas field [J].
Faraji, Mohammad Ali ;
Kadkhodaie, Ali ;
Rezaee, Reza ;
Wood, David A. .
JOURNAL OF EARTH SCIENCE, 2017, 28 (05) :857-866
[44]   Identifying channel sand-body from multiple seismic attributes with an improved random forest algorithm [J].
Ao, Yile ;
Li, Hongqi ;
Zhu, Liping ;
Ali, Sikandar ;
Yang, Zhongguo .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 173 :781-792
[45]   Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data [J].
Lognonne, P. ;
Banerdt, W. B. ;
Pike, W. T. ;
Giardini, D. ;
Christensen, U. ;
Garcia, R. F. ;
Kawamura, T. ;
Kedar, S. ;
Knapmeyer-Endrun, B. ;
Margerin, L. ;
Nimmo, F. ;
Panning, M. ;
Tauzin, B. ;
Scholz, J. -R. ;
Antonangeli, D. ;
Barkaoui, S. ;
Beucler, E. ;
Bissig, F. ;
Brinkman, N. ;
Calvet, M. ;
Ceylan, S. ;
Charalambous, C. ;
Davis, P. ;
Van Driel, M. ;
Drilleau, M. ;
Fayon, L. ;
Joshi, R. ;
Kenda, B. ;
Khan, A. ;
Knapmeyer, M. ;
Lekic, V. ;
McClean, J. ;
Mimoun, D. ;
Murdoch, N. ;
Pan, L. ;
Perrin, C. ;
Pinot, B. ;
Pou, L. ;
Menina, S. ;
Rodriguez, S. ;
Schmelzbach, C. ;
Schmerr, N. ;
Sollberger, D. ;
Spiga, A. ;
Staehler, S. ;
Stott, A. ;
Stutzmann, E. ;
Tharimena, S. ;
Widmer-Schnidrig, R. ;
Andersson, F. .
NATURE GEOSCIENCE, 2020, 13 (03) :213-+
[46]   Nonlinear inversion for estimating reservoir parameters from time-lapse seismic data [J].
Dadashpour, Mohsen ;
Landro, Martin ;
Kleppe, Jon .
JOURNAL OF GEOPHYSICS AND ENGINEERING, 2008, 5 (01) :54-66
[47]   Estimation of porosity from seismic attributes using a committee model with bat-inspired optimization algorithm [J].
Gholami, Amin ;
Ansari, Hamid Reza .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2017, 152 :238-249
[48]   Application of multicomponent seismic data to tight gas reservoir characterization: A case study in the Sichuan Basin, China [J].
Zhang, Ming ;
Zhang, Xin ;
Liang, Jing ;
Jiang, Xiaoyu ;
Gan, Lideng ;
Sun, Xiping ;
Yu, Xiaowei .
GEOPHYSICS, 2024, 89 (04) :B301-B315
[49]   Integration of 3D seismic attributes and well logs for Asmari reservoir characterization in the Ramshir oilfield, the Dezful Embayment, SW Iran [J].
Sadeghi, Rahmat ;
Muossavi-Harami, Reza ;
Kadkhodaie, Rahim ;
Mahboubi, Asadollah ;
Ashtari, Ahmad ;
Kadkhodaie, Ali .
GEOPERSIA, 2021, 11 (01) :1-21
[50]   Estimation of brittleness indices for pay zone determination in a shale-gas reservoir by using elastic properties obtained from micromechanics [J].
Lizcano-Hernandez, Edgar G. ;
Nicolas-Lopez, Ruben ;
Valdiviezo-Mijangos, Oscar C. ;
Melendez-Martinez, Jaime .
JOURNAL OF GEOPHYSICS AND ENGINEERING, 2018, 15 (02) :307-314