Chow group of 1-cycles of the moduli of parabolic bundles over a curve

被引:0
作者
Chakraborty, Sujoy [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2021年 / 131卷 / 02期
关键词
Chow groups; moduli space; parabolic bundle; VECTOR-BUNDLES; RATIONALITY;
D O I
10.1007/s12044-021-00616-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Chow group of 1-cycles of the moduli space of semistable parabolic vector bundles of fixed rank, determinant and a generic weight over a nonsingular projective curve over C of genus at least 3. We show that, the Chow group of 1-cycles remains isomorphic as we vary the generic weight. As a consequence, we can give an explicit description of the Chow group in the case of rank 2 and determinant O(x), where x is an element of X is a fixed point, which extends the earlier result of Choe and Hwang (Math. Z.253 (2006) 253-281, Main theorem).
引用
收藏
页数:16
相关论文
共 8 条
[1]   VARIATIONS OF MODULI OF PARABOLIC BUNDLES [J].
BODEN, HU ;
HU, Y .
MATHEMATISCHE ANNALEN, 1995, 301 (03) :539-559
[2]   Rationality of moduli spaces of parabolic bundles [J].
Boden, HU ;
Yokogawa, K .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 :461-478
[3]   Chow group of 1-cycles on the moduli space of vector bundles of rank 2 over a curve [J].
Choe, I ;
Hwang, JM .
MATHEMATISCHE ZEITSCHRIFT, 2006, 253 (02) :281-293
[4]  
Fulton W., 1998, Intersection theory, V2, DOI 10.1007/978-1-4612-1700-8
[5]  
Hartshorne R., 1977, GRADUATE TEXT MATH, V52
[6]   Rationality of moduli of vector bundles on curves [J].
King, A ;
Schofield, A .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1999, 10 (04) :519-535
[7]   MODULI OF VECTOR-BUNDLES ON CURVES WITH PARABOLIC STRUCTURES [J].
MEHTA, VB ;
SESHADRI, CS .
MATHEMATISCHE ANNALEN, 1980, 248 (03) :205-239
[8]  
Voisin C., 2003, CAMBRIDGE STUDIES AD, VII