Recombination centers in electron irradiated Si and GaAs.

被引:1
|
作者
Bourgoin, JC
Zazoui, M
Zaidi, MA
机构
[1] Univ Paris 07, Phys Solides Grp, CNRS, F-75251 Paris 05, France
[2] Univ Hassan II, Fac Sci & Tech, Optoelect Labs, Mohammedia, Morocco
[3] Fac Sci Monastir, Semicond Lab, Monastir, Tunisia
来源
DEFECTS IN SEMICONDUCTORS - ICDS-19, PTS 1-3 | 1997年 / 258-2卷
关键词
solar cells; recombination centers; lifetime; Si; GaAs; space degradation;
D O I
10.4028/www.scientific.net/MSF.258-263.629
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using the current-voltage characteristics of an abrupt Si n(+)p junction, we show how the minority carrier lifetime, the capture cross sections for electrons and holes, and the energy level of the corresponding recombination center can be determined independently, thus allowing to characterize completely this center. This technique is illustrated by studying the main recombination center in p-type Czochralski grown Si and epitaxial n-type doped GaAs layers. It is then applied to characterize the recombination centers introduced by electron irradiation at various temperatures in Si and GaAs solar cells. In electron irradiated Si cells, we find that the main recombination center introduced by irradiation at 90 K is the vacancy. It becomes the divacancy for higher irradiation temperatures. In irradiated GaAs the recombination center, presumably associated with the As vacancy, does not change with the temperature of irradiation in the range 80 - 300 K.
引用
收藏
页码:629 / 634
页数:6
相关论文
共 50 条
  • [21] Effect of Oxygen and Hydrogen on Electron Irradiated Defects of Si Single Crystal
    Gao Yuzun General Research Institute for Non-ferrous Metats
    RareMetals, 1989, (01) : 28 - 31
  • [22] Double GaAs/Si Heterojunction Layers in Si Solar Cells Fabricated by Electron Beam Evaporation
    Palei, Srikanta
    Parida, Bhaskar
    Sahu, Rajkumar
    Mun, Jonghun
    Kim, Keunjoo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (03) : 1368 - 1375
  • [23] The Effect of Point Defects on the Activation Processes in Semiinsulating GaAs Irradiated by Si28 Ions
    M. V. Ardyshev
    V. M. Ardyshev
    Russian Physics Journal, 2004, 47 (3) : 293 - 299
  • [24] Heteroepitaxy for GaAs on Nanopatterned Si (001)
    Hsu, Chao-Wei
    Chen, Yung-Feng
    Su, Yan-Kuin
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (12) : 1009 - 1011
  • [25] Diffusion and activation of Si implanted into GaAs
    Jakiela, R
    Barcz, A
    VACUUM, 2003, 70 (2-3) : 97 - 101
  • [26] Mechanical properties of undoped GaAs. II: The brittle-to-ductile transition temperature
    Wang, Shanling
    Pirouz, Pirouz
    ACTA MATERIALIA, 2007, 55 (16) : 5515 - 5525
  • [27] Plastic and Elastic Strain Fields in GaAs/Si Core-Shell Nanowires
    Conesa-Boj, Sonia
    Boioli, Francesca
    Russo-Averchi, Eleonora
    Dunand, Sylvain
    Heiss, Martin
    Rueffer, Daniel
    Wyrsch, Nicolas
    Ballif, Christophe
    Miglio, Leo
    Fontcuberta i Morral, Anna
    NANO LETTERS, 2014, 14 (04) : 1859 - 1864
  • [28] Study of defects in proton irradiated GaAs/AlGaAs solar cells
    Zhan, Fenfen
    Hu, Jianmin
    Zhang, Yifan
    Lu, Fang
    APPLIED SURFACE SCIENCE, 2009, 255 (19) : 8257 - 8262
  • [29] Optical absorption peaks observed in electron-irradiated n-type Si
    Suezawa, M
    Fukata, N
    Kasuya, A
    PHYSICA B-CONDENSED MATTER, 2001, 308 : 276 - 279
  • [30] Raman studies of isotope effects in Si and GaAs
    Widulle, F
    Ruf, T
    Göbel, A
    Silier, I
    Schönherr, E
    Cardona, M
    Camacho, J
    Cantarero, A
    Kriegseis, W
    Ozhogin, VI
    PHYSICA B, 1999, 263 : 381 - 383