Complete moment convergence of weighted sums for arrays of negatively dependent random variables and its applications

被引:4
作者
Wu, Yongfeng [1 ,2 ,3 ]
Volodin, Andrei [4 ]
机构
[1] Soochow Univ, Ctr Financial Engn, Suzhou, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou, Peoples R China
[3] Tongling Univ, Dept Math & Comp Sci, Tongling 244000, Peoples R China
[4] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
关键词
Complete moment convergence; Weighted sums; Negatively dependent random variables; Linear processes; LARGE NUMBERS; WEAK LAWS; THEOREMS;
D O I
10.1080/03610926.2014.901365
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors study the complete moment convergence of weighted sums for arrays of rowwise negatively dependent random variables. The obtained results improve the corresponding results of Baek and Park (2010). Convergence of weighted sums for arrays of negatively dependent random variables and its applications. As an application, the authors obtain the complete moment convergence of linear processes based on pairwise negatively dependent random variables. In addition, the authors point out a gap of the proof in Baek and Park (2010) and raise an open problem.
引用
收藏
页码:3185 / 3195
页数:11
相关论文
共 28 条
[1]   On the complete convergence for weighted sums of dependent random variables under condition of weighted integrability [J].
Baek, Jong-Il ;
Ko, Mi-Hwa ;
Kim, Tae-Sung .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (04) :1101-1111
[2]   RETRACTED: Convergence of weighted sums for arrays of negatively dependent random variables and its applications (Retracted article. See vol. 143, pg. 1619, 2013) [J].
Baek, Jong-Il ;
Park, Sung-Tae .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (09) :2461-2469
[3]  
Bozorgnia A., 1996, World Congress Nonlinear Analysts, V92, P1639
[4]   LARGE DEVIATIONS FOR SOME WEAKLY DEPENDENT RANDOM-PROCESSES [J].
BURTON, RM ;
DEHLING, H .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (05) :397-401
[5]   Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability [J].
Cabrera, MO ;
Volodin, AI .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 305 (02) :644-658
[6]  
Chow Y. S., 1988, B I MATH ACAD SIN, V16, P177
[7]  
EBRAHIMI N, 1981, COMMUN STAT A-THEOR, V10, P307
[8]  
Gan SX, 2008, ACTA MATH SCI, V28, P269
[9]  
[甘师信 Gan Shixin], 2008, [数学物理学报. A辑, Acta Mathematica Scientia], V28, P283
[10]   COMPLETE CONVERGENCE AND THE LAW OF LARGE NUMBERS [J].
HSU, PL ;
ROBBINS, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1947, 33 (02) :25-31