Fano 3-folds with divisible anticanonical class

被引:17
作者
Brown, Gavin [1 ]
Suzuki, Kaori
机构
[1] Univ Kent, IMSAS, Canterbury CT2 7NF, Kent, England
[2] Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan
关键词
Primary 14J30; Secondary 14E30; 14Q15;
D O I
10.1007/s00229-007-0082-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the nonvanishing of H-0(X,- K-X) for any a Fano 3-fold X for which - KX is a multiple of another Weil divisor in Cl(X). The main case we study is Fano 3-folds with Fano index 2: that is, 3-folds X with rank Pic(X) = 1, Q-factorial terminal singularities and -K-X = 2A for an ample Weil divisor A. We give a first classification of all possible Hilbert series of such polarised varieties (X, A) and deduce both the nonvanishing of H-0(X,- K-X) and the sharp bound (-K-X)(3) >= 8/165. We find the families that can be realised in codimension up to 4.
引用
收藏
页码:37 / 51
页数:15
相关论文
共 16 条
[1]  
Altinok S., 2002, Contemp. Math., V314, P25
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]  
BROWN G, UNPUB K3 SURFACES FA
[4]  
BROWN G, 2007, IN PRESS EXP MATH
[5]  
BROWN G, 2007, IN PRESS JPN J IND A, P11
[6]  
BROWN G, LISTS EXAMPLES MAGMA
[7]  
Brown G, 2006, ALGORITHM COMP MATH, V19, P137
[8]  
Iano-Fletcher AR, 2000, LOND MATH S, V281, P101
[9]  
ISKOVSKIKH VA, 1999, ENCYCL MATH SCI, V47, P247
[10]   ON THE PLURIGENERA OF MINIMAL ALGEBRAIC 3-FOLDS WITH K=0 [J].
KAWAMATA, Y .
MATHEMATISCHE ANNALEN, 1986, 275 (04) :539-546