Automated Good Manufacturing Practice-compliant generation of human monocyte-derived dendritic cells from a complete apheresis product using a hollow-fiber bioreactor system overcomes a major hurdle in the manufacture of dendritic cells for cancer vaccines

被引:14
作者
Uslu, Ugur [1 ]
Erdmann, Michael [1 ]
Wiesinger, Manuel [1 ]
Schuler, Gerold [1 ]
Schuler-Thurner, Beatrice [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Univ Klinikum Erlangen, Dept Dermatol, Erlangen, Germany
关键词
adoptive cell transfer; cell therapy; cellular therapy; dendritic cells; dendritic cell vaccine; immunotherapy; monocyte-derived dendritic cells; vaccines; METASTATIC MELANOMA PATIENTS; MESENCHYMAL STROMAL CELLS; CLINICAL-RESPONSES; TUMOR LYSATE; STEM-CELLS; PHASE-II; EXPANSION; MATURE; IMMUNOTHERAPY; VACCINATION;
D O I
10.1016/j.jcyt.2019.09.001
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Background: Although dendritic cell (DC)-based cancer vaccines represent a promising treatment strategy, its exploration in the clinic is hampered due to the need for Good Manufacturing Practice (GMP) facilities and associated trained staff for the generation of large numbers of DCs. The Quantum bioreactor system offered by Terumo BCT represents a hollow-fiber platform integrating GMP-compliant manufacturing steps in a closed system for automated cultivation of cellular products. In the respective established protocols, the hollow fibers are coated with fibronectin and trypsin is used to harvest the final cell product, which in the case of DCs allows processing of only one tenth of an apheresis product. Materials and Results: We successfully developed a new protocol that circumvents the need for fibronectin coating and trypsin digestion, and makes the Quantum bioreactor system now suitable for generating large numbers of mature human monocyte-derived DCs (Mo-DCs) by processing a complete apheresis product at once. To achieve that, it needed a step-by-step optimization of DC-differentiation, e.g., the varying of media exchange rates and cytokine concentration until the total yield (% of input CD14(+) monocytes), as well as the phenotype and functionality of mature Mo-DCs, became equivalent to those generated by our established standard production of Mo-DCs in cell culture bags. Conclusions: By using this new protocol for the Food and Drug Administration-approved Quantum system, it is now possible for the first time to process one complete apheresis to automatically generate large numbers of human Mo-DCs, making it much more feasible to exploit the potential of individualized DC-based immunotherapy.
引用
收藏
页码:1166 / 1178
页数:13
相关论文
共 62 条
[1]   Dendritic cells acquire antigen from apoptotic cells and induce class I restricted CTLs [J].
Albert, ML ;
Sauter, B ;
Bhardwaj, N .
NATURE, 1998, 392 (6671) :86-89
[2]   Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia [J].
Anguille, Sebastien ;
Van de Velde, Ann L. ;
Smits, Evelien L. ;
Van Tendeloo, Viggo F. ;
Juliusson, Gunnar ;
Cools, Nathalie ;
Nijs, Griet ;
Stein, Barbara ;
Lion, Eva ;
Van Driessche, Ann ;
Vandenbosch, Irma ;
Verlinden, Anke ;
Gadisseur, Alain P. ;
Schroyens, Wilfried A. ;
Muylle, Ludo ;
Vermeulen, Katrien ;
Maes, Marie-Berthe ;
Deiteren, Kathleen ;
Malfait, Ronald ;
Gostick, Emma ;
Lammens, Martin ;
Couttenye, Marie M. ;
Jorens, Philippe ;
Goossens, Herman ;
Price, David A. ;
Ladell, Kristin ;
Oka, Yoshihiro ;
Fujiki, Fumihiro ;
Oji, Yusuke ;
Sugiyama, Haruo ;
Berneman, Zwi N. .
BLOOD, 2017, 130 (15) :1713-1721
[3]  
Barckhausen C, 2016, METHODS MOL BIOL, V1416, P389, DOI 10.1007/978-1-4939-3584-0_23
[4]   Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood [J].
Bender, A ;
Sapp, M ;
Schuler, G ;
Steinman, RM ;
Bhardwaj, N .
JOURNAL OF IMMUNOLOGICAL METHODS, 1996, 196 (02) :121-135
[5]   Efficient elutriation of monocytes within a closed system (Elutra™) for clinical-scale generation of dendritic cells [J].
Berger, TG ;
Strasser, E ;
Smith, R ;
Carste, C ;
Schuler-Thurner, B ;
Kaempgen, E ;
Schuler, G .
JOURNAL OF IMMUNOLOGICAL METHODS, 2005, 298 (1-2) :61-72
[6]  
Buschow SI, 2017, ONCOTARGET, V8, P67439, DOI 10.18632/oncotarget.18698
[7]   A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells [J].
Carreno, Beatriz M. ;
Magrini, Vincent ;
Becker-Hapak, Michelle ;
Kaabinejadian, Saghar ;
Hundal, Jasreet ;
Petti, Allegra A. ;
Ly, Amy ;
Lie, Wen-Rong ;
Hildebrand, William H. ;
Mardis, Elaine R. ;
Linette, Gerald P. .
SCIENCE, 2015, 348 (6236) :803-808
[8]   Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells [J].
Dhodapkar, MV ;
Steinman, RM ;
Sapp, M ;
Desai, H ;
Fossella, C ;
Krasovsky, J ;
Donahoe, SM ;
Dunbar, PR ;
Cerundolo, V ;
Nixon, DF ;
Bhardwaj, N .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (02) :173-180
[9]   Effective clinical-scale production of dendritic cell vaccines by monocyte elutriation directly in medium, subsequent culture in bags and final antigen loading using peptides or RNA transfection [J].
Erdmann, Michael ;
Doerrie, Jan ;
Schaft, Niels ;
Strasser, Erwin ;
Hendelmeier, Martin ;
Kaempgen, Eckhart ;
Schuler, Gerold ;
Schuler-Thurner, Beatrice .
JOURNAL OF IMMUNOTHERAPY, 2007, 30 (06) :663-674
[10]   Automated closed-system manufacturing of human monocyte-derived dendritic cells for cancer immunotherapy [J].
Erdmann, Michael ;
Uslu, Ugur ;
Wiesinger, Manuel ;
Bruening, Mareke ;
Altmann, Tobias ;
Strasser, Erwin ;
Schuler, Gerold ;
Schuler-Thurner, Beatrice .
JOURNAL OF IMMUNOLOGICAL METHODS, 2018, 463 :89-96