SIMPLICITY AND FINITENESS OF DISCRETE SPECTRUM OF THE BENJAMIN-ONO SCATTERING OPERATOR

被引:13
作者
Wu, Yilun [1 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
关键词
Benjamin-Ono; inverse scattering transform; spectral analysis; Birman-Schwinger; discrete spectrum; Fokas-Ablowitz; KORTEWEG-DEVRIES EQUATION; SMALL DISPERSION LIMIT; DE-VRIES EQUATION; INTERNAL WAVES; WELL-POSEDNESS; CAUCHY-PROBLEM; TRANSFORM; FLUIDS;
D O I
10.1137/15M1030649
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A spectral analysis is done on the L operator of the Lax pair for the Benjamin-Ono equation. Simplicity and finiteness of the discrete spectrum are established as are needed for the Fokas and Ablowitz inverse scattering transform scheme. A crucial step in the simplicity proof is the discovery of a new identity connecting the L-2 norm of the eigenvector to its inner product with the scattering potential. The proof for finiteness is an extension of the ideas involved in the Birman-Schwinger bound for Schrodinger operators.
引用
收藏
页码:1348 / 1367
页数:20
相关论文
共 33 条
[1]  
[Anonymous], 1975, PUBL RES I MATH SCI, DOI DOI 10.2977/PRIMS/1195192000
[2]  
[Anonymous], THESIS U MICHIGAN
[3]   INTERNAL WAVES OF PERMANENT FORM IN FLUIDS OF GREAT DEPTH [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1967, 29 :559-&
[4]   2-PARAMETER MIURA TRANSFORMATION OF THE BENJAMIN-ONO EQUATION [J].
BOCK, TL ;
KRUSKAL, MD .
PHYSICS LETTERS A, 1979, 74 (3-4) :173-176
[5]  
BUSLAEV VS, 1986, J SOVIET MATH, V34, P1905, DOI DOI 10.1007/bf01095099
[6]   Fully nonlinear internal waves in a two-fluid system [J].
Choi, W ;
Camassa, R .
JOURNAL OF FLUID MECHANICS, 1999, 396 :1-36
[7]   THE SCATTERING TRANSFORM FOR THE BENJAMIN-ONO-EQUATION [J].
COIFMAN, RR ;
WICKERHAUSER, MV .
INVERSE PROBLEMS, 1990, 6 (05) :825-861
[8]   SOLITARY INTERNAL WAVES IN DEEP WATER [J].
DAVIS, RE ;
ACRIVOS, A .
JOURNAL OF FLUID MECHANICS, 1967, 29 :593-&
[9]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368
[10]  
Deift P, 1997, INT MATH RES NOTICES, V1997, P285