The existence of regular boundary points for non-linear elliptic systems

被引:52
作者
Duzaar, Frank
Kristensen, Jan
Mingione, Giuseppe
机构
[1] Univ Erlangen Nurnberg, Math Inst, D-91054 Erlangen, Germany
[2] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[3] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2007年 / 602卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1515/CRELLE.2007.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider non-linear elliptic systems of the type -div a(x, u, Du) = 0, with Holder continuous dependence on (x, u), and give conditions guaranteeing that. Hn-1-almost every boundary point is a regular point for the gradient of solutions to related Dirichlet problems. We also introduce a new comparison technique, in order to deal with difference quotients.
引用
收藏
页码:17 / 58
页数:42
相关论文
共 48 条
[1]   REGULARITY FOR MINIMIZERS OF NON-QUADRATIC FUNCTIONALS - THE CASE 1-LESS-THAN-P-LESS-THAN-2 [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 140 (01) :115-135
[2]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[3]  
Adams A, 2003, SOBOLEV SPACES
[4]  
[Anonymous], J MATH SCI N Y
[5]  
BECK L, 2005, THESIS F ALEXANDER U
[6]  
BECK L, UNPUB BOUNDARY REGUL
[7]   ANALYTICAL FOUNDATIONS OF THE THEORY OF QUASICONFORMAL MAPPINGS IN RN [J].
BOJARSKI, B ;
IWANIEC, T .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1983, 8 (02) :257-324
[8]   ELLIPTIC-SYSTEMS WITH NON-LINEARITY Q GREATER OR EQUAL TO 2 - REGULARITY OF THE SOLUTION OF THE DIRICHLET PROBLEM [J].
CAMPANATO, S .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1987, 147 :117-150
[9]   DIFFERENTIABILITY OF THE SOLUTIONS OF NON-LINEAR ELLIPTIC-SYSTEMS WITH NATURAL GROWTH [J].
CAMPANATO, S .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 131 :75-106
[10]  
CAMPANATO S, 1988, B UNIONE MAT ITAL, V2A, P27