Spatially separated catalytic sites supplied with the CdS-MoS2-In2O3 ternary dumbbell S-scheme heterojunction for enhanced photocatalytic hydrogen production

被引:58
|
作者
Zhang, Lijun [1 ,2 ]
Jiang, Xudong [1 ]
Jin, Zhiliang [1 ]
Tsubaki, Noritatsu [2 ]
机构
[1] North Minzu Univ, Sch Chem & Chem Engn, Yinchuan 750021, Ningxia, Peoples R China
[2] Univ Toyama, Grad Sch Engn, Dept Appl Chem, Gofuku 3190, Toyama 9308555, Japan
关键词
CDS NANORODS; SHELL; WATER; EVOLUTION; H-2; NANOSHEETS; OXIDATION; SULFIDE; ROBUST; GROWTH;
D O I
10.1039/d2ta00839d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Inspired by natural photosynthesis, the development of high-efficiency and low-energy hydrogen production catalysts is essential to alleviate environmental problems. Here, the CdS nanorods are the main body, and the CdS-MoS2 dumbbell structure is synthesized by the solvothermal method to make the photogenerated electrons flow along the one-dimensional axis. The nanoconfinement effect of MOF-derived In2O3 hollow hexagonal prisms greatly expands the spectral absorption range of the composite photocatalysts. The CdS-In2O3 S-scheme heterojunction was constructed by a simple electrostatic-driven self-assembly method. In situ irradiation X-ray photoelectron spectroscopy analysis shows that the internal electric field drives the photogenerated electrons in In2O3 to move to CdS, forming a S-scheme heterojunction of CdS-In2O3, which greatly promotes the separation of electron-hole pairs. In2O3 is combined with the sidewalls of the CdS-MoS2 dumbbell to weaken the surface oxidation kinetics, thereby inhibiting the surface photo-corrosion reaction. MoS2 promotes the CdS-In2O3 S-scheme heterojunction photocatalyst to show significant photocatalytic hydrogen evolution performance. The hydrogen production rate under the irradiation of a 300 W simulated light source is 198.58 mmol h(-1) g(-1), and natural light can produce a large number of visible bubbles. The effective separation of reduction and oxidation functional sites in space, the directional transfer of photogenerated electrons-holes, and the construction of S-scheme heterojunctions are the main factors for the significant increase in the catalytic activity of semiconductor photocatalysts. This work provides an effective strategy for designing metal sulfide-based photocatalysts with high activity and high stability of water-splitting properties.
引用
收藏
页码:10715 / 10728
页数:14
相关论文
共 50 条
  • [1] Mn-doped CdS/Cu2O: An S-scheme heterojunction for photocatalytic hydrogen production
    Fan, Lufang
    Han, Jiahui
    Wei, Kai
    Ma, Changchang
    Feng, Sheng
    Zhou, Yun
    Dai, Xiaojun
    Ye, Zhiwei
    Wang, Yang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 960
  • [2] Mn-doped CdS/Cu2O: An S-scheme heterojunction for photocatalytic hydrogen production
    Fan, Lufang
    Han, Jiahui
    Wei, Kai
    Ma, Changchang
    Feng, Sheng
    Zhou, Yun
    Dai, Xiaojun
    Ye, Zhiwei
    Wang, Yang
    Journal of Alloys and Compounds, 2023, 960
  • [3] Cu 2 O based NiCo 2 O 4 /GDY double S-scheme heterojunction for enhanced photocatalytic hydrogen production
    Du, Jieyuan
    Jiang, Guoping
    Jin, Fei
    Wang, Jingzhi
    Jin, Zhiliang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 69 : 1166 - 1176
  • [4] Construction of spherical WO3/CdS S-scheme heterojunction for photocatalytic H2O2 production in real seawater
    Wang, Ya-Nan
    Guo, Yaxin
    Peng, Jinsong
    Zhao, Jianwei
    Yang, Lei
    Song, Haiyan
    Chen, Chunxia
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (01):
  • [5] S-Scheme Heterojunction Photocatalyst for Photocatalytic H2O2 Production: A Review
    Fang, Weili
    Wang, Liang
    CATALYSTS, 2023, 13 (10)
  • [6] Clustered tubular S-scheme ZnO/CdS heterojunctions for enhanced photocatalytic hydrogen production
    Lu, Hongyu
    Liu, Yanjun
    Zhang, Shizheng
    Wan, Jie
    Wang, Xiaoli
    Deng, Lin
    Kan, Jianfei
    Wu, Gongde
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2023, 289
  • [7] Construction of S-scheme CoMn2O4/ZnCdS p-n heterojunction for enhanced photocatalytic hydrogen production
    Li, Qingzhuo
    Jin, Fei
    Liu, Jiajia
    Wang, Peizhen
    Yang, Bolin
    Jin, Zhiliang
    JOURNAL OF MATERIALS CHEMISTRY C, 2025,
  • [8] Internal electric field induced S-scheme heterojunction MoS2/CoAl LDH for enhanced photocatalytic hydrogen evolution
    Tao, Junnan
    Yu, Xiaohui
    Liu, Qinqin
    Liu, Guiwu
    Tang, Hua
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 585 : 470 - 479
  • [9] Construction of Bi-assisted modified CdS/TiO2 nanotube arrays with ternary S-scheme heterojunction for photocatalytic wastewater treatment and hydrogen production
    Wang, Qingyao
    Zhu, Shuxu
    Zhao, Shengzhan
    Li, Chenxu
    Wang, Runze
    Cao, Dandan
    Liu, Guijing
    FUEL, 2022, 322
  • [10] Fabrication of an S-Scheme Heterojunction Photocatalyst MoS2/PANI with Greatly Enhanced Photocatalytic Performance
    Tao, Liyue
    Wang, Jun
    Luo, Zhaoyue
    Ren, Junjie
    Yin, Dongguang
    LANGMUIR, 2023, 39 (32) : 11426 - 11438