Strong Convergence Theorems by Hybrid Methods for New Demimetric Mappings in Banach Spaces

被引:0
作者
Takahashi, Wataru [1 ,2 ,3 ,4 ]
机构
[1] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80708, Taiwan
[2] Kaohsiung Med Univ, Res Ctr Nonlinear Anal & Optimizat, Kaohsiung 80708, Taiwan
[3] Keio Univ, Keio Res & Educ Ctr Nat Sci, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
[4] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
基金
日本学术振兴会;
关键词
Fixed point; demimetric mapping; maximal monotone operator; metric resolvent; metric projection; hybrid method; shrinking projection method; duality mapping; MAXIMAL MONOTONE-OPERATORS; FIXED-POINT THEOREMS; SHRINKING PROJECTION METHOD; NONEXPANSIVE-MAPPINGS; NONLINEAR MAPPINGS; NONSELF-MAPPINGS; WEAK; FAMILIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a new nonlinear mapping called generalized demimetric and the C-Q method, we first prove a strong convergence theorem for finding a fixed point for the mapping in a Banach space which generalizes simultaneously the results by Nakajo and Takahashi [12], and Solodov and Svaiter [14] in a Hilbert space. Furthermore, using the mapping and the shrinking projection method, we prove another strong convergence theorem in a Banach space. We apply these results to obtain new strong convergence theorems in a Hilbert space and a Banach space.
引用
收藏
页码:201 / 216
页数:16
相关论文
共 24 条