Some fractional Hermite-Hadamard-type integral inequalities with s-(α, m)-convex functions and their applications

被引:0
|
作者
Liu, R. N. [1 ]
Xu, Run [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu, Shandong, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2021年 / 2021卷 / 01期
基金
美国国家科学基金会;
关键词
Hermite-Hadamard inequality; Convex functions; Riemann-Liouville fractional integral; Power-mean inequality; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.1186/s13662-021-03231-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under the new concept of s-(alpha, m)-convex functions, we obtain some new Hermite-Hadamard inequalities with an s-(alpha, m)-convex function. We use these inequalities to estimate Riemann-Liouville fractional integrals with second-order differentiable convex functions to enrich the Hermite-Hadamard-type inequalities. We give some applications to special means.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] ON SOME NEW AND GENERAL q-HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS
    Abdullah, Zoya
    Yousaf, Awais
    Promsakon, Chanon
    Sitthiwirattham, Thanin
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (01) : 21 - 34
  • [42] Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions
    Budak, Huseyin
    Kara, Hasan
    Ali, Muhammad Aamir
    Khan, Sundas
    Chu, Yuming
    OPEN MATHEMATICS, 2021, 19 (01): : 1081 - 1097
  • [43] Some (p, q)-Estimates of Hermite-Hadamard-Type Inequalities for Coordinated Convex and Quasi- Convex Functions
    Kalsoom, Humaira
    Amer, Muhammad
    Junjua, Moin-ud-Din
    Hussain, Sabir
    Shahzadi, Gullnaz
    MATHEMATICS, 2019, 7 (08)
  • [44] On Integral Inequalities of Hermite-Hadamard Type for s-Geometrically Convex Functions
    Zhang, Tian-Yu
    Ji, Ai-Ping
    Qi, Feng
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [45] Generalizations of some Hermite-Hadamard-type inequalities
    Houkei Fok
    Seakweng Vong
    Indian Journal of Pure and Applied Mathematics, 2015, 46 : 359 - 370
  • [46] Some Hermite-Hadamard Type Inequalities for h-Convex Functions and their Applications
    Ogulmus, Hatice
    Sarikaya, Mehmet Zeki
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (03): : 813 - 819
  • [47] Hermite-Hadamard-Type Inequalities for Harmonically Convex Functions via Proportional Caputo-Hybrid Operators with Applications
    Butt, Saad Ihsan
    Umar, Muhammad
    Khan, Dawood
    Seol, Youngsoo
    Tipuric-Spuzevic, Sanja
    FRACTAL AND FRACTIONAL, 2025, 9 (02)
  • [48] Some New Quantum Hermite-Hadamard Type Inequalities for s-Convex Functions
    Gulshan, Ghazala
    Budak, Huseyin
    Hussain, Rashida
    Nonlaopon, Kamsing
    SYMMETRY-BASEL, 2022, 14 (05):
  • [49] SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR DIFFERENTIABLE CONVEX FUNCTIONS AND APPLICATIONS
    Xi, Bo-Yan
    Qi, Feng
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (03): : 243 - 257
  • [50] On new versions of Hermite-Hadamard-type inequalities based on tempered fractional integrals
    Budak, H.
    Hezenci, F.
    Tunc, T.
    Kara, H.
    FILOMAT, 2024, 38 (07) : 2361 - 2379