Some fractional Hermite-Hadamard-type integral inequalities with s-(α, m)-convex functions and their applications

被引:0
|
作者
Liu, R. N. [1 ]
Xu, Run [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu, Shandong, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2021年 / 2021卷 / 01期
基金
美国国家科学基金会;
关键词
Hermite-Hadamard inequality; Convex functions; Riemann-Liouville fractional integral; Power-mean inequality; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.1186/s13662-021-03231-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under the new concept of s-(alpha, m)-convex functions, we obtain some new Hermite-Hadamard inequalities with an s-(alpha, m)-convex function. We use these inequalities to estimate Riemann-Liouville fractional integrals with second-order differentiable convex functions to enrich the Hermite-Hadamard-type inequalities. We give some applications to special means.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Further Hermite-Hadamard-Type Inequalities for Fractional Integrals with Exponential Kernels
    Li, Hong
    Meftah, Badreddine
    Saleh, Wedad
    Xu, Hongyan
    Kilicman, Adem
    Lakhdari, Abdelghani
    FRACTAL AND FRACTIONAL, 2024, 8 (06)
  • [22] Hermite-Hadamard-type inequalities for strongly (α, m)-convex functions via quantum calculus
    Mishra, Shashi Kant
    Sharma, Ravina
    Bisht, Jaya
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (05) : 4971 - 4994
  • [23] SOME INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-GEOMETRICALLY CONVEX FUNCTIONS
    Yin, Hong-Ping
    Wang, Jing-Yu
    Qi, Feng
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 699 - 705
  • [24] Hermite-Hadamard-type inequalities for (g, φh)- convex dominated functions
    Ozdemir, Muhamet Emin
    Gurbuz, Mustafa
    Kavurmaci, Havva
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [25] Strongly (g,h;α - m)-convex functions and the consequent Hermite-Hadamard-type inequalities
    Liu, Yonghong
    Farid, Ghulam
    Pecaric, Josip
    Ro, Jongsuk
    Elamin, Mawahib
    Abdel-Khalek, Sayed
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2025, 33 (01):
  • [26] Hermite-Hadamard-type inequalities for generalized 3-convex functions
    Bessenyei, M
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2004, 65 (1-2): : 223 - 232
  • [27] Some Hermite-Hadamard-Fejer Type Integral Inequalities for Differentiable η-Convex Functions with Applications
    Delavar, M. Rostamian
    De La Sen, M.
    JOURNAL OF MATHEMATICS, 2017, 2017
  • [28] Integral inequalities of Hermite-Hadamard type for (α, m)-GA-convex functions
    Ji, Ai-Ping
    Zhang, Tian-Yu
    Qi, Feng
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (02) : 255 - 265
  • [29] Integral inequalities of the Hermite-Hadamard type for (α, m)-GA-convex functions
    Shuang, Ye
    Qi, Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 1854 - 1860
  • [30] On some inequalities related to fractional Hermite-Hadamard type for differentiable convex functions
    Budak, Huseyin
    Kara, Hasan
    Ali, Muhammad Aamir
    Kiris, Mehmet Eyup
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (02): : 222 - 233