Some fractional Hermite-Hadamard-type integral inequalities with s-(α, m)-convex functions and their applications

被引:0
作者
Liu, R. N. [1 ]
Xu, Run [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu, Shandong, Peoples R China
基金
美国国家科学基金会;
关键词
Hermite-Hadamard inequality; Convex functions; Riemann-Liouville fractional integral; Power-mean inequality; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.1186/s13662-021-03231-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under the new concept of s-(alpha, m)-convex functions, we obtain some new Hermite-Hadamard inequalities with an s-(alpha, m)-convex function. We use these inequalities to estimate Riemann-Liouville fractional integrals with second-order differentiable convex functions to enrich the Hermite-Hadamard-type inequalities. We give some applications to special means.
引用
收藏
页数:16
相关论文
共 25 条
[1]   Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals [J].
Agarwal, Praveen ;
Jleli, Mohamed ;
Tomar, Muharrem .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[2]   Hermite-Hadamard Type Inequalities for Interval (h1, h2)-Convex Functions [J].
An, Yanrong ;
Ye, Guoju ;
Zhao, Dafang ;
Liu, Wei .
MATHEMATICS, 2019, 7 (05)
[3]  
Dragomir S. S., 2000, RGMIA Monographs
[4]   Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].
Dragomir, SS ;
Agarwal, RP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (05) :91-95
[5]  
Gorenflo R., 1997, FRACTIONAL CALCULUS
[6]   New inequalities for fractional integrals and their applications [J].
Hwang, Shiow-Ru ;
Tseng, Kuei-Lin ;
Hsu, Kai-Chen .
TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (03) :471-486
[7]  
Iqbal M, 2016, J COMPUT ANAL APPL, V21, P946
[8]  
Kanniappan P., 1996, Opsearch, V33, P174
[9]   Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula [J].
Kirmaci, US .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (01) :137-146
[10]  
Ling L.X., 2019, J INEQUAL APPL, V2019, DOI [10.1186/s13660-019-2160-1, DOI 10.1186/S13660-019-2160-1]