Asymptotic behavior of Muntz-Christoffel functions at the endpoints

被引:1
作者
Stefansson, Ulfar F. [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Christoffel functions; Muntz polynomials; ORTHOGONAL POLYNOMIALS; SYSTEMS;
D O I
10.1016/j.cam.2009.02.074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish asymptotics for Christofrel functions of Muntz systems at the endpoints x = 0 and x = 1 of [0, 1], assuming that there exists a rho > 0, such that the Muntz exponents {lambda(k)} satisfy lim(k ->infinity)lambda(k)/k = rho. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1601 / 1606
页数:6
相关论文
共 50 条
  • [31] A Maximal Function Approach to Christoffel Functions and Nevai's Operators
    Lubinsky, D. S.
    CONSTRUCTIVE APPROXIMATION, 2011, 34 (03) : 357 - 369
  • [32] MARKOV-BERNSTEIN AND NIKOLSKII INEQUALITIES, AND CHRISTOFFEL FUNCTIONS FOR EXPONENTIAL WEIGHTS ON (-1,1)
    LUBINSKY, DS
    SAFF, EB
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (02) : 528 - 556
  • [33] CHRISTOFFEL FUNCTIONS AND ORTHOGONAL POLYNOMIALS FOR EXPONENTIAL WEIGHTS ON [-1,1]
    LEVIN, AL
    LUBINSKY, DS
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 111 (535) : R3 - +
  • [34] Data-driven Reachability using Christoffel Functions and Conformal Prediction
    Tebjou, Abdelmouaiz
    Frehse, Goran
    Chamroukhi, Faicel
    CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, VOL 204, 2023, 204 : 193 - 212
  • [35] Generalized sampled-data hold functions with asymptotic zero-order hold behavior and polynomic reconstruction
    Ugalde, Unai
    Barcena, Rafael
    Basterretxea, Koldo
    AUTOMATICA, 2012, 48 (06) : 1171 - 1176
  • [36] CHRISTOFFEL FUNCTIONS, ORTHOGONAL POLYNOMIALS, AND NEVAIS CONJECTURE FOR FREUD WEIGHTS (VOL 8, PG 463, 1992)
    LEVIN, AL
    LUBINSKY, DS
    CONSTRUCTIVE APPROXIMATION, 1995, 11 (03) : 417 - 418
  • [37] Semiclassical asymptotic behavior of orthogonal polynomials
    Yafaev, D. R.
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (11) : 2857 - 2891
  • [38] Asymptotic behavior for a class of population dynamics
    Huang, Chuangxia
    Yang, Luanshan
    Cao, Jinde
    AIMS MATHEMATICS, 2020, 5 (04): : 3378 - 3390
  • [39] Semiclassical asymptotic behavior of orthogonal polynomials
    D. R. Yafaev
    Letters in Mathematical Physics, 2020, 110 : 2857 - 2891
  • [40] The asymptotic behavior of the linear transmission problem in viscoelasticity
    Alves, Margareth
    Rivera, Jaime Munoz
    Sepulveda, Mauricio
    Vera Villagran, Octavio
    Zegarra Garay, Maria
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (5-6) : 483 - 497