Metal Coated Polypropylene Separator with Enhanced Surface Wettability for High Capacity Lithium Metal Batteries

被引:39
作者
Din, Mir Mehraj Ud [1 ]
Murugan, Ramaswamy [1 ]
机构
[1] Pondicherry Univ, Dept Phys, High Energy Dens Batteries Res Lab, Pondicherry 605014, India
关键词
SULFUR BATTERY; ELECTROCHEMICAL PROPERTIES; CATHODE MATERIALS; ELECTRODE MATERIALS; PERFORMANCE; GRAPHENE; BEHAVIOR; ANODE; LINI1/3CO1/3MN1/3O2; DEPOSITION;
D O I
10.1038/s41598-019-53257-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium metal batteries are among the strong contenders to meet the increasing energy demands of the modern world. Metallic lithium (Li) is light in weight, possesses very low standard negative electrochemical potential and offers an enhanced theoretical capacity (3860 mA h g(-1)). As a negative electrode Li paves way to explore variety of elements including oxygen, sulfur and various other complex oxides as potential positive electrodes with a promise of much higher energy densities than that of conventional positive electrodes. However, there are technical challenges in utilizing metallic lithium due to its higher reactivity towards liquid electrolytes and higher affinity to form Li dendrites, leading to serious safety concerns. Here, we report on preparation of niobium (Nb) metal-coated binder-free and highly hydrophilic polypropylene separator prepared via radio frequency (RF) magnetron sputtering. Thin layer of niobium metal (Nb) particles were deposited onto the polypropylene (PP) sheet for various time periods to achieve desired coating thickness. The as-prepared separator revealed excellent hydrophilic behaviour due to enhanced surface wettability. Symmetric cells display reduced interface resistance and uniform voltage profiles for 1000 cycles with reduced polarization at higher current densities suggesting smooth stripping and plating of Li and homogeneous current distribution at electrode/electrolyte interface under room temperature conditions. Nb nanolayer protected separator with LiNi0.33M0.33Co0.33O2 (LNMC) and composite sulfur cathodes revealed an enhanced cycling stability.
引用
收藏
页数:12
相关论文
共 77 条
[1]   Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries [J].
Al Salem, Hesham ;
Babu, Ganguli ;
Rao, Chitturi V. ;
Arava, Leela Mohana Reddy .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (36) :11542-11545
[2]   LiCoO2:: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties [J].
Antolini, E .
SOLID STATE IONICS, 2004, 170 (3-4) :159-171
[3]   Factors which limit the cycle life of rechargeable lithium (metal) batteries [J].
Aurbach, D ;
Zinigrad, E ;
Teller, H ;
Dan, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1274-1279
[4]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/NMAT2764, 10.1038/nmat2764]
[5]   6Li NMR studies of cation disorder and transition metal ordering in Li[Ni1/3Mn1/3Co1/3]O2 using ultrafast magic angle spinning [J].
Cahill, LS ;
Yin, SC ;
Samoson, A ;
Heinmaa, I ;
Nazar, LF ;
Goward, GR .
CHEMISTRY OF MATERIALS, 2005, 17 (26) :6560-6566
[6]  
Chandrashekar S, 2012, NAT MATER, V11, P311, DOI [10.1038/NMAT3246, 10.1038/nmat3246]
[7]   Conductive Lewis Base Matrix to Recover the Missing Link of Li2S8 during the Sulfur Redox Cycle in Li-S Battery [J].
Chen, Jia-Jia ;
Yuan, Ru-Ming ;
Feng, Jia-Min ;
Zhang, Qian ;
Huang, Jing-Xin ;
Fu, Gang ;
Zheng, Ming-Sen ;
Ren, Bin ;
Dong, Quan-Feng .
CHEMISTRY OF MATERIALS, 2015, 27 (06) :2048-2055
[8]   Lithium Dendrites Inhibition via Diffusion Enhancement [J].
Chen, Yongxiu ;
Dou, Xiangyu ;
Wang, Kai ;
Han, Yongsheng .
ADVANCED ENERGY MATERIALS, 2019, 9 (17)
[9]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[10]   Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries [J].
Cheng, Xin-Bing ;
Huang, Jia-Qi ;
Zhang, Qiang ;
Peng, Hong-Jie ;
Zhao, Meng-Qiang ;
Wei, Fei .
NANO ENERGY, 2014, 4 :65-72