Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality

被引:159
作者
Ahn, Hyo-Sung
Chen, YangQuan
Podlubny, Igor
机构
[1] Utah State Univ, Coll Engn, CSOIS, Dept Elect & Comp Engn, Logan, UT 84322 USA
[2] Tech Univ Kosice, Dept Appl Informat & Proc Control, Kosice 04200, Slovakia
基金
美国国家科学基金会;
关键词
fractional-order linear dynamic systems; robust stability; interval linear time invariant systems; interval matrix;
D O I
10.1016/j.amc.2006.08.099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a new analytical robust stability checking method of fractional-order linear time invariant interval uncertain system. This paper continues the authors ' previous work [YangQuan Chen, Hyo-Sung Ahm, I. Podlubny, Robust stability check of fractional-order linear time invariant systems with interval uncertainties, in: Proceedings of the IEEE Conference on Mechatronics and Automation, Niagara Falls, Canada, July, 2005, pp. 210-215] where matrix perturbation theory was used. For the new robust stability checking, Lyapunov inequality is utilized for finding the maximum eigenvalue of a Hermitian matrix. Through numerical examples, the usefulness and the effectiveness of the newly proposed method are verified. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 35 条
[21]   STABILIZING SOLUTION OF DISCRETE ALGEBRAIC RICCATI EQUATION [J].
MOLINARI, BP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1975, AC20 (03) :396-399
[22]  
Moze M., 2005, P ASME 2005 INT DES, P1
[23]   Fractional signal processing and applications [J].
Ortigueira, MD ;
Machado, JAT .
SIGNAL PROCESSING, 2003, 83 (11) :2285-2286
[24]   The CRONE Control of Resonant Plants: Application to a Flexible Transmission [J].
Oustaloup, A. ;
Mathieu, B. ;
Lanusse, P. .
EUROPEAN JOURNAL OF CONTROL, 1995, 1 (02) :113-121
[25]   The CRONE suspension [J].
Oustaloup, A ;
Moreau, X ;
Nouillant, M .
CONTROL ENGINEERING PRACTICE, 1996, 4 (08) :1101-1108
[26]   FRACTIONAL ORDER SINUSOIDAL OSCILLATORS - OPTIMIZATION AND THEIR USE IN HIGHLY LINEAR FM MODULATION [J].
OUSTALOUP, A .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1981, 28 (10) :1007-1009
[27]  
PETRAS I, 2005, P INT C COMP CYB ICC, P1
[28]   Fractional-order systems and PI-λ-D-μ-controllers [J].
Podlubny, I .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (01) :208-214
[29]  
PODLUBNY I, 1999, An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications
[30]   State-space representation for fractional order controllers [J].
Raynaud, HF ;
Zergaïnoh, A .
AUTOMATICA, 2000, 36 (07) :1017-1021